
Generating Plausible Distractors for Multiple-Choice Questions
via Student Choice Prediction

Yooseop Lee1 Suin Kim2 Yohan Jo1*

1Seoul National University 2Elice
{lyooseop, yohan.jo}@snu.ac.kr suin@elicer.com

Abstract

In designing multiple-choice questions (MCQs)
in education, creating plausible distractors is
crucial for identifying students’ misconcep-
tions and gaps in knowledge and accurately
assessing their understanding. However, prior
studies on distractor generation have not paid
sufficient attention to enhancing the difficulty
of distractors, resulting in reduced effectiveness
of MCQs. This study presents a pipeline for
training a model to generate distractors that are
more likely to be selected by students. First, we
train a pairwise ranker to reason about students’
misconceptions and assess the relative plausi-
bility of two distractors. Using this model, we
create a dataset of pairwise distractor ranks and
then train a distractor generator via Direct Pref-
erence Optimization (DPO) to generate more
plausible distractors. Experiments on computer
science subjects (Python, DB, MLDL) demon-
strate that our pairwise ranker effectively iden-
tifies students’ potential misunderstandings and
achieves ranking accuracy comparable to hu-
man experts. Furthermore, our distractor gener-
ator outperforms several baselines in generat-
ing plausible distractors and produces questions
with a higher item discrimination index (DI). 1

1 Introduction

Multiple-Choice Questions (MCQs) hold signif-
icant educational value as they provide a useful
tool for assessing students’ knowledge. Among the
most critical elements in MCQs are distractors—
the incorrect answer options. While the growing
demand for education has amplified the need for
numerous MCQs, manually creating distractors is
time-consuming and costly, even for experts (Luo
et al., 2024). Consequently, the automation of dis-

*Corresponding author.
1This paper is currently under review. All source code,

fine-tuned models, and a subset of our data will be made
publicly available upon publication.

[Question] Look at the following code and choose

 the correct code to replace (blank).

 my_list = (blank)
 print(my_list)
 Result: [5, 15, 25, 35]
[Answer][num * 10 - 5 for num in range(1, 5)]

Distractor

Generation
Plausibility

Rank

GPT

• [num * 10 - 5 for num in range(1, 6)]
• [num * 10 for num in range(1, 5)]

Ours

• my_list = [10, 30, 50, 70]
• my_list = [5, 10, 15, 20]

[Question] Which of the following is not correct?

[Answer] sort() can only be applied to strings.

Distractor

Generation

GPT

• When using remove(), if the element to be

 removed is duplicated, only the first

 occurrence will be removed.

• The pop() method removes and returns the

 last item in a list.

Ours

• sort() can be used to sort lists.

• sort() can be used to sort arrays.

Code Type Question

Statement Type Question

Plausibility

Rank

Figure 1: Examples of distractor generation. A question
and a correct answer are provided as input, and the
output is a set of generated distractors. The plausibility
rank metric indicates how likely students are to select
the distractors.

tractor generation has emerged as a promising so-
lution (Doughty et al., 2024).

However, prior research has focused primar-
ily on generating distractors similar to human-
authored ones (Fernandez et al., 2024; Wang et al.,
2023), with insufficient emphasis on enhancing
their plausibility. Plausible distractors are crucial
as they encourage students to deliberate longer over
their answers, and high-quality MCQs must pos-
sess an appropriate level of difficulty to differen-
tiate among levels of achievement (Baek, 2019).
By contrast, overly simplistic distractors are eas-
ily dismissed, failing to adequately assess student

1

proficiency and reducing the educational value of
the assessment. Therefore, creating plausible dis-
tractors that target students’ common mistakes or
misconceptions is essential for developing highly
discriminative MCQs (Shin et al., 2019).

Based on these needs, this study presents a
model training pipeline for distractor generation.
Figure 1 illustrates example distractors generated
by GPT and our model. Our main idea is to as-
sign relative ranks to distractors based on which
ones students are more likely to select, and use this
information to train a model to generate plausible
distractors. To achieve this, the process involves
three steps (Figure 2). First, we train a pairwise
ranker to predict which distractors are more plausi-
ble and likely to confuse students (Step 1). Next,
we create a synthetic student choice dataset that
includes pairwise ranking information among dis-
tractors (Step 2). Finally, leveraging this dataset,
we train a distractor generator by applying Di-
rect Preference Optimization (DPO, Rafailov et al.,
2024) (Step 3).

According to evaluation on computer science
(CS) subjects (Python, DB, MLDL), our pairwise
ranker effectively identifies students’ common mis-
conceptions, achieving ranking accuracy compara-
ble to human experts. In addition, the distractor
generator surpasses several baselines in generating
plausible distractors in both automated metrics and
human studies. Notably, the distractors generated
by our model exhibit a high discrimination index
(DI), an essential educational metric that measures
a question’s ability to distinguish high-performing
students from low-performing ones.

The key contributions of our study are threefold.
• We build a pairwise ranker that reasons through

students’ misconceptions and predicts which dis-
tractor they are more likely to choose.

• We construct a student choice dataset with plau-
sibility rankings among distractors and use it to
train a plausible distractor generator.

• We apply our method to MCQs in CS subjects
(Python, DB, MLDL) and demonstrate the gen-
erator’s capability of generating distractors with
high plausibility and DI.

2 Related Works

2.1 Distractor Generation

Previous studies on distractor generation can be
categorized based on the item format and domain.

Passage-Based Many studies focus on generat-
ing distractors based on passage (e.g., reading ma-
terial), often using datasets like RACE (Lai et al.,
2017), DREAM (Sun et al., 2019), SciQ (Welbl
et al., 2017), and Wikipedia (Le Berre et al., 2022).
Qiu et al. (2020) proposed the EDGE framework,
which reformulates passages and questions through
attention mechanisms to generate distractors. Qu
et al. (2024) introduced a dual-task training ap-
proach where separate training was conducted us-
ing passages and questions as input to generate
both answers and distractors.

However, as our study focuses on MCQs in the
CS domain without relying on passages, these prior
works are not directly comparable to ours.

Cloze-Style Cloze-style formats are commonly
used in literacy tests that ask for appropriate words
to fill in blanks (Chiang et al., 2022) or in quizzes
assessing science knowledge (Ren and Q. Zhu,
2021). Wang et al. (2023) proposed a pseudo
Kullback-Leibler Divergence method to regulate
distractor generation by considering item discrimi-
nation factors. Yu et al. (2024) used a knowledge
graph to generate distractors by retrieving relevant
triplets and selecting those most aligned with the
QA context.

Our framework is not limited to cloze-style ques-
tions, which are relatively infrequent in our dataset,
and supports a broader range of question types.

Math Scarlatos et al. (2024) improved the pro-
cess of generating distractors for math problems by
dividing it into two main steps: overgenerate and
rank. In the overgenerate phase, they used a large
language model (LLM) to generate n distractors,
and in the rank phase, a ranker was employed to fil-
ter out the top-k distractors most likely to be chosen
by students. Feng et al. (2024) explored a kNN-
based approach to retrieve in-context examples sim-
ilar to the target question and used them to gener-
ate distractors. Fernandez et al. (2024) proposed
the DiVERT, which generates distractors based on
learned error representations in math MCQs.

The methods by Scarlatos et al. (2024) and Feng
et al. (2024) are used as baselines for comparison
with our model. We cannot compare with Fernan-
dez et al. (2024) since their method requires error
explanations for each distractor.

Other Domains Luo et al. (2024) proposed
Chain-of-Exemplar Reasoning, a method to sequen-
tially generate distractors for multimodal questions

2

Base MCQ Dataset

Step 1.

Training Pairwise Ranker

Step 2.

Making Student Choice Dataset

Step 3.

Training Distractor Generator

𝐴

𝑄

𝐷𝐴

𝐷𝐵

0.5

0.2

0.3

Selection rates

𝑄 𝐴

𝐷𝐴 𝐷𝐵?

𝑅 𝐶𝐵

Choose A or B

𝑄 𝐴

𝐷𝐶 𝐷𝐷
Augmenting

distractors

𝐷𝐵 𝐷𝐷 𝐷𝐴 𝐷𝐶

Re-ranking

> > >

𝑄 𝐴

𝐷1 …

𝑛

𝑇 𝐷𝑛

𝐷𝐵 𝐷𝐷 𝐷𝐴 𝐷𝐶

DPO

Figure 2: Training pipeline for the distractor generation.

requiring image interpretation, enhancing quality
by leveraging contextually similar examples.

Meanwhile, research on distractor generation in
the CS domain remains limited. While Doughty
et al. (2024) developed a pipeline for generating
MCQs aligned with learning objectives for pro-
gramming education using GPT-4, our study em-
phasizes the plausibility of distractors by leverag-
ing a smaller language model.

2.2 Pairwise Ranker

Our study aims to assign plausibility ranks among
distractors using an LLM (Figure 2, Step 1 and
2). This approach is motivated by prior findings
demonstrating that LLMs exhibit strong inferential
abilities, closely aligning with human performance
in many evaluation tasks (Sun et al., 2023; Liu et al.,
2023). Moreover, distilling these abilities from
LLMs into smaller models, such as Prometheus 2
(Kim et al., 2024), fine-tuned from Mistral (Jiang
et al., 2023), and ListT5 (Yoon et al., 2024), has
achieved comparable performance to LLMs while
offering faster inference and reduced positional
biases.

However, the reasoning abilities of LLMs to rank
plausible distractors remain underexplored. A re-
lated study by Scarlatos et al. (2024) proposed an
approach that trains a pairwise ranker for distrac-
tors using data on the actual selection rates of dis-
tractors by students. They further applied DPO
to prioritize more plausible distractors. However,
their model neither examines nor leverages LLMs’
reasoning abilities, and the trained model lacks in-
terpretability. In contrast, our study extensively
evaluates LLMs’ reasoning abilities by comparing
various prompting approaches that are broadly ap-
plicable across diverse subjects. Additionally, our
ranker generates reasoning behind its choices, en-

hancing its interpretability.

3 Methods

In this study, we propose a training pipeline to build
a model capable of automatically generating more
plausible distractors (as shown in Figure 2). Below,
we first describe the base MCQ dataset used for
training (§3.1), then introduce the modeling meth-
ods for the pairwise ranker (§3.2), student choice
dataset (§3.3), and distractor generator (§3.4).

3.1 Base MCQ Dataset

To train both the pairwise ranker and the distractor
generator, we use an MCQ dataset created by edu-
cators on a nationwide online learning platform in
South Korea. The MCQs in this dataset have been
provided to K12 institutions, large corporations,
and government agencies, and contain a variety of
CS-related questions and student answers. We re-
tained only those related to Python, DB (SQL), and
Machine Learning & Deep Learning (MLDL). We
target two categories of MCQs—coding and state-
ment (see Figure 1). The statistics of this dataset
are described in Table 1.

A key feature of this dataset is that it includes
information on how many students answered each
question and the selection rate for each distractor.
This allows us to determine which distractors were
more confusing and plausible to students. Since
each question was solved by hundreds of students
from diverse sectors, the selection rate informa-
tion is considered reliable. This information will
play a key role in training the pairwise ranker and
distractor generator, as discussed later. We will
release a subset of this dataset—52 questions with
no licensing issues—to the community.

3

Subject
of

questions in
train/test set

Avg.
correctness

rate per
question

Avg. # of
distractors

per question

Avg. # of
students

per question

Python 264/52 70.7% 3.1 636

DB 54/13 65.6% 2.9 399

MLDL 126/32 61.8% 3.2 1,075

Table 1: Statistics of the base MCQ dataset. The cor-
rectness rate refers to the percentage of students who
answered the question correctly.

3.2 Pairwise Ranker

The pairwise ranker (MRank) is designed to take
a question (Q), its correct answer (A), and two
distractors (DA, DB) as input (Figure 2, Step 1),
and determine which distractor is more likely to be
selected by students.

MRank(Q,A,DA, DB) → {R,CA orB} (1)

The model outputs two main components:

(1) Reasoning (R) To enhance the interpretabil-
ity and accuracy of ranking results, we utilize the
reasoning abilities of LLMs through a structured
prompt. Specifically, we instruct the model to
generate reasoning about (1) the knowledge being
tested (e.g., “When students approach this prob-
lem, they first need to understand ...”) based on the
question and the correct answer, and (2) why each
of the two given distractors might appear plausi-
ble to students (e.g., “Distractor A might confuse
students who misunderstand the syntax ...”).

(2) Choice (CA orB) The model outputs the re-
sult of the reasoning process as a single token (ei-
ther A or B), indicating which distractor is more
likely to be selected by students.

To train a relatively small LM to perform as a
ranker, we prepare some training data of reasoning
for supervised fine-tuning (SFT). Specifically, for
each question in the training set of the base MCQ
dataset, we prompt GPT-4o with a distractor pair
and the indicator of which one was more frequently
selected by students, and instruct it to generate
reasoning about the two distractors that concludes
in favor of the more frequently chosen one. This
reasoning (R) and the more plausible distractor
(CA orB) form the training data for small LMs.

However, the SFT model exhibited suboptimal
accuracy and became more erroneous as the reason-
ing grew longer. To address this, we use DPO to
further train the model’s reasoning process. After

Subject
Avg. # of new

distractors
in top-3

of
distractor

comb. for SFT

of
chosen/rejected
sets for DPO

All 1.45 18,899 7,613

Table 2: Statistics of the student choice dataset.
Columns 2 and 3 show the number of training sam-
ples used for SFT and DPO, respectively.

inference on the training set using the SFT model,
samples diverging from the ground-truth choice
were labeled as rejected, while the original training
samples were set as chosen. DPO is then applied
to ensure the model generates correct reasoning
and choices. Examples of the model’s prompts are
provided in Appendix A.1.

3.3 Student Choice Dataset

The student choice dataset is created to build train-
ing data for the distractor generator (Figure 2, Step
2). For each question in the base MCQ dataset,
GPT-4o is used to generate three new distrac-
tors distinct from the human-authored ones (Ap-
pendix D). These new distractors, along with the
original ones, are scored using the pairwise ranker.
At this stage, the relative rankings of the original
distractors are preserved, while rankings between
the original and new distractors, as well as among
the new distractors, are determined by our pair-
wise ranker. Each question ultimately has approx-
imately six distractors ranked in plausible order.
This dataset serves for training the distractor gener-
ator for both SFT and DPO (§3.4).

Table 2 presents key statistics. Column 1 of Ta-
ble 2 shows that, on average, 1.45 newly added
distractors are ranked among the top 3 for each
question, indicating that the newly added distrac-
tors are as plausible as the human-authored ones.

3.4 Distractor Generator

The distractor generator (MGen) takes as input a
question (Q), its correct answer (A), and a hyper-
parameter n, which specifies the number of dis-
tractors to generate (Figure 2, Step 3). The model
first determines the type (T) of distractor (e.g., Cor-
rect/Incorrect knowledge) it will generate, and then
outputs n distractors (Di).

MGen(Q,A, n) → {T,D1 ...Dn} (2)

We ensure that the model produces distractors
that are both valid and plausible as follows.

4

(1) Enhancing Validity Before generating dis-
tractors, the model first determines the type (T)
of distractor. T specifies whether the question re-
quires selecting a correct or incorrect statement.
This step is critical for questions involving nega-
tion (e.g., “Select the incorrect statement ...”) as
the model has a strong tendency to generate incor-
rect statements as distractors, even in such cases
(see Appendix B.6 for validity evaluation).

(2) Improving Plausibility To enhance the plau-
sibility of distractors, we train the model through
two stages: SFT and DPO.

SFT: We use the student choice dataset to create
training data {(Q,A, T, n,D1, ..., Dn)} (n ranges
from 1 to the maximum number of distractors avail-
able for each question). The trained model learns
the basic ability to generate distractors for a given
question with varying n, but without prioritizing
more plausible ones.

DPO: To enhance the model to generate more
plausible distractors, we apply DPO using the stu-
dent choice dataset. Specifically, for each question,
we construct all possible pairs between the top-n
distractors and the bottom-n distractors, labeling
the distractor from the top-n as chosen and the one
from the bottom-n as rejected in each pair. This
allows the model to adjust its generation process to
prioritize more plausible distractors that are more
likely to challenge students. An example of the
model’s prompt is provided in Appendix B.1. We
also explored an alternative pairing method for in-
creasing the combinations (Appendix B.2), but its
performance was inferior.

4 Experiment Settings

In this section, we describe the model training setup
(§4.1) and introduce the metrics used to evaluate
each model (§4.2 and §4.3).

4.1 Model Training

For all experiments, both the pairwise ranker and
the distractor generator are fine-tuned by applying
LoRA (Hu et al., 2021) to the Mistral-7B-Instruct-
v0.2. The numbers of training and test data are de-
scribed in Table 1 and Table 2. The detailed settings
for SFT and DPO are provided in Appendix A.2
and B.2.

4.2 Pairwise Ranker

Baselines To assess the performance of the pro-
posed pairwise ranker, we compare it against the
following baseline models (the prompts for each
baseline are included in Appendix A.1):
• GPT-3.5-turbo and GPT-4o: We instruct these

GPT models to predict the ranking between two
distractros in a zero-shot manner. To examine
the impact of different prompt formats, we ex-
periment with four approaches: (1) Reasoning:
the reasoning-based prompt format described in
§3.2, (2) Rubric: scoring based on evaluation cri-
teria for assessing plausibility, (3) G-Eval: adapt-
ing the prompt proposed by Liu et al. (2023) for
our specific task, and (4) Discussion: simulat-
ing a collaborative learning scenario where two
teacher agents discuss while observing students’
problem-solving processes.

• Scarlatos et al. (2024): We follow the pairwise
ranker prompt and training/inference method pro-
posed in this paper, replacing their data with
ours.

Training Data We use two distinct settings for
training data (Table 1):
• Separate (Sep.): Models trained separately with

data for each subject—Python, DB, and MLDL.

• Combined (Comb.): A model trained with data
from all subjects combined.

Distractor Order One known limitation of LLM-
based pairwise ranking is positional bias, where the
output may vary depending on whether two choices,
A and B, are presented in the input prompt as AB
or BA (Yoon et al., 2024). To address this, we
set the temperature to 0.5 and repeat the reasoning
process with both AB and BA input sequences until
consistent outputs are achieved, or randomly select
a result after 10 attempts.

Evaluation Metrics The evaluation metrics for
the pairwise ranker are as follows:
• Rank Accuracy measures how often the ranker

correctly identifies the distractor with the higher
student selection rate in the test set.

• Human Evaluation aims to compare the
model’s performance with human experts. First,
two professors in data science perform the pair-
wise ranking task on 60 test samples (20 per
subject), and their results are compared with our
model’s rank accuracy. Second, three Master’s

5

students majoring in data science assess the qual-
ity of model-generated reasoning and ranking
results. For this, 30 samples (10 per subject) of
reasoning and choices generated by our pairwise
ranker (‘DPO, Comb.’ in Table 3) are randomly
selected from the test set. The survey form and
the rubric are in Appendix A.6.

• Consistency in Rank Prediction tracks the num-
ber of iterations required for the model to pre-
dict the same choice for both AB and BA inputs.
Fewer iterations indicate lower positional bias.

4.3 Distractor Generator

The performance of our distractor generator is eval-
uated using the following metrics:

(1) Plausibility We compare the plausibility of
distractors generated by our model, GPT models,
the kNN approach proposed by Feng et al. (2024),
and human experts (from the base MCQ dataset)
as measured by our pairwise ranker (‘DPO, Comb.’
in Table 3). Win/tie/lose counts are calculated per
question/distractor in two settings:
• Setting A: For each test question, three distrac-

tors are generated by each model (n = 3), and
only valid ones are retained. These are then com-
pared pairwise between two models, with one
point awarded to the winner. Identical distractors
are excluded from comparisons.

• Setting B: To account for cases where models
generate fewer than three valid distractors, each
model’s temperature is increased to generate up
to five valid distractors per model. After exclud-
ing identical distractors between the models, the
top-3 are selected for pairwise comparison.

(2) Human Evaluation We conduct a human
evaluation where actual students assess the diffi-
culty of distractors generated by our method. The
test comprises 40 MCQs (Python: 20, DB: 10,
MLDL: 10). Each question was sampled from
the test set of the base MCQ dataset and paired
with four distractors, one from each model (SFT,
DPO, GPT-3.5-turbo, and GPT-4o), along with a
‘None of the above’ option. The test is taken by
15 college students enrolled in AI courses at our
university.2 Based on the selection counts for each
distractor, we calculate the plausibility and discrim-
ination index for each model. The discrimination

2The sample size is larger than the one tested on three
individuals in Luo et al. (2024).

Rank Accuracy ↑
Python DB MLDL Avg.

GPT-3.5 (Reasoning) 0.633 0.523 0.606 0.587

GPT-4o (Reasoning) 0.686 0.664 0.570 0.640

GPT-4o (Rubric) 0.686 0.500 0.624 0.603

GPT-4o (G-Eval) 0.632 0.550 0.543 0.575

GPT-4o (Discussion) 0.549 0.482 0.487 0.506

Scarlatos et al. (2024) 0.532 0.386 0.545 0.488

Ours (SFT, Sep.) 0.677 0.491 0.594 0.587

Ours (SFT, Comb.) 0.642 0.650 0.677 0.657

Ours (DPO, Comb.) 0.712 0.659 0.655 0.675

Ours (SFT w/o Reasoning) 0.659 0.523 0.521 0.567

Table 3: Evaluation results on pairwise rankers. The
results were averaged over five generations for each
model.

index indicates the ability of each item to differen-
tiate between high- and low-performing students
and is calculated as DI = (U − L)/N , where U
and L denote the number of students in the upper
(U) and lower (L) groups who answered the item
correctly, and N is the number of students in each
group. More details about the test settings and our
rationale are provided in Appendix B.4.

5 Experiment Results

In this section, we present the experimental results
for the pairwise ranker (§5.1) and the distractor
generator (§5.2).

5.1 Pairwise Ranker

(1) Rank Accuracy As shown in Table 3, in
terms of accuracy, our DPO model achieved an
accuracy of 67.5% (row 9), outperforming GPT-
3.5-turbo (58.7%, row 1) and GPT-4o (64.0%, row
2) on average. This result is somewhat surpris-
ing because our model was trained on reasoning
generated by GPT-4o. Moreover, the DPO model
significantly outperformed the SFT models (58.7%–
65.7%, rows 7–8), particularly in Python, showing
the effectiveness of DPO in enhancing the reason-
ing capability of the model. While Scarlatos et al.
(2024)’s method achieved strong performance on
math questions in their original work, it exhibited
lower accuracy on the CS subjects (48.8%, row 6).

(2) Human Evaluation Human experts (two pro-
fessors) tasked with choosing the more plausible
distractor for 60 questions achieved an accuracy
of 71.7%, compared to 70% achieved by our DPO

6

1

2

3

4

5

Logical
Reasoning

Student
Understanding

Knowledge
Accuracy

Choice
Agreement

Python DB MLDL

Figure 3: Human evaluation on our pairwise ranker. The
results from participants were averaged.

0% 50% 100%

DB

Python

Code

Operation Confusion

Syntax Familiarity

Logical Consistency

Calculation Mistake

Structure Error

Additional Conditions

0% 50% 100%

MLDL

DB

Python

Statement

Conceptual Overlap

Familiarity Trap

Ambiguity and Complexity

Partial Understanding

Practical Experience

Overgeneralization

Figure 4: Plausibility factors in our pairwise ranker’s
reasoning.

model on the same task. This result suggests that
the task is challenging even for experts and that
GPT-like LLMs trained on large data can predict
the confusion experienced by students at a level
comparable to human performance.

Figure 3 presents survey results from three Mas-
ter’s students evaluating the reasoning quality of the
DPO model on a 5-point Likert scale. The model
effectively inferred students’ misconceptions with
logical reasoning and accurate knowledge.

(3) Plausibility Factors We analyzed main fac-
tors revealed in the model’s reasoning to determine
plausibility. We selected reasoning outputs where
the DPO model predicted correct choices, and cat-
egorized plausibility factors in collaboration with
GPT-4o. Figure 4 visualizes the proportion of each
category. In the code type questions (e.g., determin-
ing the output of a code snippet or filling in blanks),
factors such as incorrect assumptions about func-
tion outputs or operations were the most common,
while in the statement type questions (e.g., select-
ing statements about concepts), factors like con-
ceptual overlap with other similar terms appeared
most frequently. Definitions for each category can
be found in Appendix A.5.

per Distractor (Win/Lose)
Setting A Setting B

Ours
(SFT)

Ours
(DPO)

Ours
(SFT)

Ours
(DPO)

Python

GPT-3.5 127/129 145/101 190/198 198/190

GPT-4o 158/199 184/156 178/212 200/185

Feng et al. (2024) 153/157 164/131 176/223 196/199
Human-Authored 191/199 207/159 220/175 217/178

DB

GPT-3.5 29/32 28/26 37/48 34/42
GPT-4o 40/55 50/41 38/47 47/39

Feng et al. (2024) 35/47 41/36 45/41 45/33

Human-Authored 25/71 35/54 24/53 31/51

MLDL

GPT-3.5 72/73 68/65 128/115 150/89

GPT-4o 104/110 104/91 135/134 167/99

Feng et al. (2024) 81/90 84/68 129/123 150/110

Human-Authored 86/130 81/107 111/141 127/119

Table 4: Plausibility evaluation on distractor generators.
Win/lose counts of our models (columns) against base-
lines (rows), averaged over two evaluations.

(4) Reasoning Methods We conducted an ab-
lation study to examine the effectiveness of our
reasoning method for rank accuracy. As shown in
Table 3, for GPT-4o, using our reasoning structure
(row 2) substantially outperformed other reasoning
methods (rows 3–5), leading us to adopt the current
reasoning format for the trained models. Training
the model without the reasoning process (row 10)
significantly reduced ranking accuracy, highlight-
ing the importance of our reasoning method.

(5) Consistency in Rank Prediction We eval-
uated the consistency of predictions when input
order was altered and found that our model ex-
hibits lower positional bias compared to GPT-3.5-
turbo. The experimental results are provided in
Appendix A.4.

(6) Error Analysis Upon analyzing cases where
our pairwise ranker produced incorrect reasoning,
we identified several types of error, such as misjudg-
ing implausible errors as plausible and struggling
with reasoning for unfamiliar questions that were
underrepresented in the training data. A detailed
analysis and suggestions for future work can be
found in Appendix A.8.

5.2 Distractor Generator

(1) Plausibility Table 4 summarizes the win/lose
counts of our distractor generators against GPT
models, Feng et al. (2024), and human-authored
distractors, as evaluated by our pairwise ranker
(DPO-based). Our DPO model generated more
plausible distractors than baseline models in most

7

of Selected Distractors ↑ DI ↑

Python DB MLDL
Top
50%

Low
50% Avg.

GPT-3.5 42 18 22 38 44 0.162
GPT-4o 14 5 26 22 23 0.119

Ours (SFT) 40 10 24 32 42 0.194
Ours (DPO) 45 14 27 39 47 0.212

Table 5: Human evaluation on distractor generators.

cases. Compared to human-authored distractors,
our DPO model excelled in Python but underper-
formed in DB and MLDL. This discrepancy may
be due to the underrepresentation of these subjects
in our dataset, leading to limited exposure during
training.

We assessed the benefit of augmenting the base
MCQ dataset with synthetic distractors and auto-
mated ranking (i.e., the student choice dataset). Us-
ing only the base MCQ dataset for SFT and DPO
led to a significant performance drop compared
to using the whole student choice dataset, and no
significant difference was observed between SFT
and DPO (Appendix B.7). This highlights the im-
portance of incorporating diverse chosen-rejected
samples and sufficient distractors during training.
Overall, the results demonstrate that our approach
of creating the student choice dataset and employ-
ing DPO using this data effectively enhances dis-
tractor plausibility.

We further examined the models’ performance
based on question type (i.e., code vs. statement).
Our model outperformed GPT-3.5-turbo in gener-
ating plausible distractors for code type questions
but was slightly less effective for statement type
questions in Python and DB. In contrast, compared
to GPT-4o, our model tended to perform better in
statement type questions. Detailed results are in
Appendix B.3.

(2) Human Evaluation Table 5 compares the
frequency of distractors selected by students, show-
ing that our DPO model generated more plausible
distractors than GPT-4o across all subjects and out-
performed GPT-3.5-turbo in all but one subject.
To evaluate whether the distractors have differing
impacts based on students’ proficiency levels, we
divided the students into two groups—Top 50%
and Low 50%—based on their average scores. The
distractors generated by the DPO model were most
frequently chosen by both groups. These findings
suggest that our model may effectively identify ar-

eas of confusion across varying proficiency levels
as a versatile tool for a wide range of students.

Our DPO model achieved the highest discrimina-
tion index (DI) of 0.212, falling within the accept-
able range of discrimination (0.21–0.24) (Kumar
et al., 2021). This indicates that the distractors
generated by our model are better at differenti-
ating between high-performing students and low-
performing ones than the baseline models. This is
desirable because MCQs with a high DI can iden-
tify misconceptions and gaps in students’ knowl-
edge, and challenging MCQs can promote deeper
learning.

(3) Additional Evaluations We additionally
evaluated the text similarity between model-
generated distractors and human-authored ones, as
well as their validity (i.e., whether they are indeed
incorrect options for the question). Our model
(DPO) showed greater text similarity to human-
authored distractors than GPT-3.5-turbo and GPT-
4o. It also demonstrated higher validity compared
to GPT-3.5-turbo, particularly excelling in ques-
tions that ask for incorrect statements. Detailed
analyses can be found in Appendix B.5 and B.6.

(4) Error Analysis We analyzed the suboptimal
distractors generated by our model and identified
several types of issues. For code type questions,
the distractors lacked variation in format, while for
statement type questions, they were overly similar
to the correct answers and failed to incorporate
broader conceptual differences. Examples of each
type and future improvement strategies are detailed
in Appendix B.8.

6 Conclusion

In this study, we proposed a pipeline for training
a model to generate more plausible distractors for
MCQs and demonstrated its effectiveness across
computer science subjects. We trained the pair-
wise ranker to evaluate the relative plausibility
of distractors, and used this to create the student
choice dataset where distractors for each question
are ranked by plausibility. From this dataset, we
created chosen-rejected pairs of distractors to train
the distractor generator using DPO. Our models
outperformed GPT and other baseline models and
performed comparably to humans in various met-
rics, including pairwise rank accuracy and distrac-
tor plausibility. We believe that our work can ad-
vance automated educational tools, contributing to

8

more adaptive and effective learning environments.

Limitations

The models presented in this study have the follow-
ing limitations. First, the pairwise ranker’s method
of comparing distractors pairwise significantly in-
creases the number of combinations and requires
substantial computing resources due to the need for
generating reasoning. A listwise approach using an
encoder-decoder structure could be explored as a
solution (Yoon et al., 2024).

Second, the distractor generator occasionally
produces invalid distractors, necessitating review
by human experts or high-performing LLMs (e.g.,
GPT-4o) to accurately evaluate students’ knowl-
edge. To address this limitation, future work could
include an additional supervision phase, such as
integrating feedback loops with other models or ap-
plying constraints like Counterfactual Contrastive
Decoding (Qu et al., 2024).

Finally, our method focuses on generating diffi-
cult distractors, but there are instances where ad-
justing the difficulty level of MCQs to suit the
needs of the target students is necessary. While
our pairwise ranker can be utilized to select dis-
tractors with varying degrees of plausibility, future
work could explore more direct approaches, such
as incorporating student knowledge tracing or adap-
tive decoding, to address this challenge (Cui and
Sachan, 2023).

References
Sun-Geun Baek. 2019. Theory and Practice of Educa-

tional Evaluation. Educational Science, Paju.

Shang-Hsuan Chiang, Ssu-Cheng Wang, and Yao-
Chung Fan. 2022. CDGP: Automatic cloze distrac-
tor generation based on pre-trained language model.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 5835–5840, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Peng Cui and Mrinmaya Sachan. 2023. Adaptive and
personalized exercise generation for online language
learning. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 10184–10198, Toronto,
Canada. Association for Computational Linguistics.

Jacob Doughty, Zipiao Wan, Anishka Bompelli, Juba-
hed Qayum, Taozhi Wang, Juran Zhang, Yujia
Zheng, Aidan Doyle, Pragnya Sridhar, Arav Agarwal,
Christopher Bogart, Eric Keylor, Can Kultur, Jaromir
Savelka, and Majd Sakr. 2024. A comparative study

of ai-generated (gpt-4) and human-crafted mcqs in
programming education. In Proceedings of the 26th
Australasian Computing Education Conference, ACE
’24, page 114–123, New York, NY, USA. Association
for Computing Machinery.

Wanyong Feng, Jaewook Lee, Hunter McNichols,
Alexander Scarlatos, Digory Smith, Simon Wood-
head, Nancy Ornelas, and Andrew Lan. 2024. Ex-
ploring automated distractor generation for math
multiple-choice questions via large language mod-
els. In Findings of the Association for Computational
Linguistics: NAACL 2024, pages 3067–3082.

Nigel Fernandez, Alexander Scarlatos, Wanyong Feng,
Simon Woodhead, and Andrew Lan. 2024. DiVERT:
Distractor generation with variational errors repre-
sented as text for math multiple-choice questions.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9063–9081, Miami, Florida, USA. Association for
Computational Linguistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Seungone Kim, Juyoung Suk, Shayne Longpre,
Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon
Seo. 2024. Prometheus 2: An open source language
model specialized in evaluating other language mod-
els. arXiv preprint arXiv:2405.01535.

Dharmendra Kumar, Raksha Jaipurkar, Atul Shekhar,
Gaurav Sikri, and V Srinivas. 2021. Item analysis
of multiple choice questions: A quality assurance
test for an assessment tool. Medical Journal Armed
Forces India, 77:S85–S89.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785–
794, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Guillaume Le Berre, Christophe Cerisara, Philippe
Langlais, and Guy Lapalme. 2022. Unsuper-
vised multiple-choice question generation for out-
of-domain Q&A fine-tuning. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
732–738, Dublin, Ireland. Association for Computa-
tional Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:

9

https://doi.org/10.18653/v1/2022.findings-emnlp.429
https://doi.org/10.18653/v1/2022.findings-emnlp.429
https://doi.org/10.18653/v1/2023.acl-long.567
https://doi.org/10.18653/v1/2023.acl-long.567
https://doi.org/10.18653/v1/2023.acl-long.567
https://doi.org/10.1145/3636243.3636256
https://doi.org/10.1145/3636243.3636256
https://doi.org/10.1145/3636243.3636256
https://doi.org/10.18653/v1/2024.emnlp-main.512
https://doi.org/10.18653/v1/2024.emnlp-main.512
https://doi.org/10.18653/v1/2024.emnlp-main.512
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/2022.acl-short.83
https://doi.org/10.18653/v1/2022.acl-short.83
https://doi.org/10.18653/v1/2022.acl-short.83
https://doi.org/10.18653/v1/2023.emnlp-main.153

NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522, Singapore. Association for Com-
putational Linguistics.

Haohao Luo, Yang Deng, Ying Shen, See-Kiong Ng,
and Tat-Seng Chua. 2024. Chain-of-exemplar: En-
hancing distractor generation for multimodal educa-
tional question generation. In Proceedings of the
62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 7978–7993, Bangkok, Thailand. Association
for Computational Linguistics.

Wajiha Mahjabeen, Saeed Alam, Usman Hassan, Tahira
Zafar, Rubab Butt, Sadaf Konain, and Myedah Rizvi.
2017. Difficulty index, discrimination index and
distractor efficiency in multiple choice questions. An-
nals of PIMS-Shaheed Zulfiqar Ali Bhutto Medical
University, 13(4):310–315.

Zhaopeng Qiu, Xian Wu, and Wei Fan. 2020. Automatic
distractor generation for multiple choice questions
in standard tests. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 2096–2106, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Fanyi Qu, Hao Sun, and Yunfang Wu. 2024. Unsuper-
vised distractor generation via large language model
distilling and counterfactual contrastive decoding. In
Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 827–838, Bangkok, Thai-
land. Association for Computational Linguistics.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Siyu Ren and Kenny Q. Zhu. 2021. Knowledge-driven
distractor generation for cloze-style multiple choice
questions. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(5):4339–4347.

Assad Ali Rezigalla, Ali Mohammed Elhassan
Seid Ahmed Eleragi, Amar Babikir Elhussein,
Jaber Alfaifi, Mushabab A ALGhamdi, Ahmed Y
Al Ameer, Amar Ibrahim Omer Yahia, Osama A Mo-
hammed, and Masoud Ishag Elkhalifa Adam. 2024.
Item analysis: the impact of distractor efficiency
on the difficulty index and discrimination power of
multiple-choice items. BMC Medical Education,
24(1):445.

Alexander Scarlatos, Wanyong Feng, Andrew Lan, Si-
mon Woodhead, and Digory Smith. 2024. Improving
automated distractor generation for math multiple-
choice questions with overgenerate-and-rank. In Pro-
ceedings of the 19th Workshop on Innovative Use
of NLP for Building Educational Applications (BEA
2024), pages 222–231, Mexico City, Mexico. Associ-
ation for Computational Linguistics.

Jinnie Shin, Qi Guo, and Mark J Gierl. 2019. Multiple-
choice item distractor development using topic mod-
eling approaches. Frontiers in psychology, 10:825.

Kai Sun, Dian Yu, Jianshu Chen, Dong Yu, Yejin Choi,
and Claire Cardie. 2019. DREAM: A challenge data
set and models for dialogue-based reading compre-
hension. Transactions of the Association for Compu-
tational Linguistics, 7:217–231.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is ChatGPT good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 14918–14937, Singapore. Association for
Computational Linguistics.

Neeraj Varshney, Satyam Raj, Venkatesh Mishra, Ag-
neet Chatterjee, Ritika Sarkar, Amir Saeidi, and
Chitta Baral. 2024. Investigating and addressing
hallucinations of llms in tasks involving negation.
Preprint, arXiv:2406.05494.

Hui-Juan Wang, Kai-Yu Hsieh, Han-Cheng Yu, Jui-
Ching Tsou, Yu An Shih, Chen-Hua Huang, and Yao-
Chung Fan. 2023. Distractor generation based on
Text2Text language models with pseudo Kullback-
Leibler divergence regulation. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 12477–12491, Toronto, Canada. Association
for Computational Linguistics.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 94–106, Copenhagen, Den-
mark. Association for Computational Linguistics.

Soyoung Yoon, Eunbi Choi, Jiyeon Kim, Hyeongu Yun,
Yireun Kim, and Seung-won Hwang. 2024. ListT5:
Listwise reranking with fusion-in-decoder improves
zero-shot retrieval. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2287–
2308, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Han Cheng Yu, Yu An Shih, Kin Man Law, KaiYu Hsieh,
Yu Chen Cheng, Hsin Chih Ho, Zih An Lin, Wen-
Chuan Hsu, and Yao-Chung Fan. 2024. Enhancing
distractor generation for multiple-choice questions
with retrieval augmented pretraining and knowledge
graph integration. In Findings of the Association
for Computational Linguistics: ACL 2024, pages

10

https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2024.acl-long.432
https://doi.org/10.18653/v1/2024.acl-long.432
https://doi.org/10.18653/v1/2024.acl-long.432
https://doi.org/10.18653/v1/2020.coling-main.189
https://doi.org/10.18653/v1/2020.coling-main.189
https://doi.org/10.18653/v1/2020.coling-main.189
https://doi.org/10.18653/v1/2024.findings-acl.47
https://doi.org/10.18653/v1/2024.findings-acl.47
https://doi.org/10.18653/v1/2024.findings-acl.47
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1609/aaai.v35i5.16559
https://doi.org/10.1609/aaai.v35i5.16559
https://doi.org/10.1609/aaai.v35i5.16559
https://aclanthology.org/2024.bea-1.19/
https://aclanthology.org/2024.bea-1.19/
https://aclanthology.org/2024.bea-1.19/
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.1162/tacl_a_00264
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://arxiv.org/abs/2406.05494
https://arxiv.org/abs/2406.05494
https://doi.org/10.18653/v1/2023.findings-acl.790
https://doi.org/10.18653/v1/2023.findings-acl.790
https://doi.org/10.18653/v1/2023.findings-acl.790
https://doi.org/10.18653/v1/W17-4413
https://doi.org/10.18653/v1/2024.acl-long.125
https://doi.org/10.18653/v1/2024.acl-long.125
https://doi.org/10.18653/v1/2024.acl-long.125
https://doi.org/10.18653/v1/2024.findings-acl.655
https://doi.org/10.18653/v1/2024.findings-acl.655
https://doi.org/10.18653/v1/2024.findings-acl.655
https://doi.org/10.18653/v1/2024.findings-acl.655

11019–11029, Bangkok, Thailand. Association for
Computational Linguistics.

A Pairwise Ranker

A.1 Prompt of Pairwise Ranker
The instruction prompts of pariwise ranker are in
Table 13 (Reasoning), 14 (Rubric), 15 (G-Eval), 16
(Discussion) and 17 (Scarlatos et al., 2024). We
used the same prompt (Reasoning) with GPT mod-
els and ours (SFT, DPO).

A.2 Pairwise Ranker SFT and DPO Settings
The pairwise ranker model was trained using
Mistral-7B-Instruct-v0.23 with 4-bit quantization
and fine-tuned using LoRA. For SFT, the learning
rate was set to 2e-4 and the model was trained for
5 epochs. For DPO, the learning rate was set to
1e-6, also trained for 5 epochs. These hyperparam-
eters were selected as they allowed stable training
without overfitting while preserving the quality of
the DPO output. SFT took approximately 2 hours,
and DPO took about 1 hour on an NVIDIA A6000
GPU. Scarlatos et al. (2024) model was reproduced
for baseline comparison using the same model and
DPO settings as above.

A.3 GPT Prompt for Making Pairwise
Ranker Training Data

The instruction prompt for making pairwise ranker
training data is in Table 18. To enhance the di-
versity of expressions and reasoning used in the
samples, two reasoning examples are generated for
each pair—one with temperature set to 0 and the
other to 1.

A.4 Experiment - Consistency in Rank
Prediction

Table 6 demonstrates that our pairwise ranker ex-
hibits relatively robust to positional bias. In com-
parison to GPT-3.5-turbo, which required an aver-
age of more than two attempts to produce consis-
tent results when the input order was altered, our
model (DPO) was able to achieve consistent results
with significantly fewer attempts. Additionally, our
model (DPO) slightly outperformed GPT-4o by re-
quiring fewer average generation attempts.

A.5 Plausibility Factors
We used GPT-4o to summarize and categorize rea-
soning samples where our pairwise ranker accu-

3This model is distributed under the Apache 2.0 license.
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

Generation Attempts per Question ↓
Python DB MLDL Avg.

GPT-3.5 (Reasoning) 2.491 2.482 2.427 2.467

GPT-4o (Reasoning) 1.753 1.699 1.699 1.717

GPT-4o (Rubric) 2.306 2.316 2.212 2.278

GPT-4o (G-Eval) 5.303 5.193 5.150 5.215

Ours (SFT, Sep.) 1.708 1.718 1.771 1.732

Ours (SFT, Comb.) 1.685 1.715 1.740 1.713

Ours (DPO, Comb.) 1.650 1.725 1.740 1.705

Ablation (w/o Reasoning) 2.013 2.034 2.036 2.028

Table 6: Evaluation results on pairwise rankers. The
results were averaged over five generations for each
model.

rately predicted the rankings on the test set, and
selected six representative examples per question
type. Definitions for each category are in Table 19
(Code Type) and 20 (Statement Type).

A.6 Human Evaluation
Recruitment We conducted a survey with three
Master’s degree students who voluntarily expressed
their willingness to participate in this experiment.
The survey was designed to begin only after they
agreed to provide their results for research pur-
poses and acknowledged the precautions via an
online form. The experiment lasted approximately
90 minutes, and participants were compensated
above the standard hourly wage for the time they
participated. The entire process of human evalua-
tion was conducted following procedures approved
by the IRB committee of our university.

Survey Form The reasoning quality of our pair-
wise ranker was evaluated on a 5-point Likert scale
based on the following criteria:
• Logical Reasoning: Whether the reasoning pro-

cess is logical.

• Student Understanding: Whether the reasoning
effectively understands students’ misconceptions
or problem-solving processes.

• Knowledge Accuracy: Whether the reasoning
is based on accurate and error-free knowledge.

• Choice Agreement: Whether the evaluator
agrees with the model’s final choice.
An example of the survey form is presented in

Table 21.

A.7 Ablation Study
The instruction prompt used for the ablation study
(w/o Reasoning) is in Table 22, and the training

11

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

settings are identical to those of our pairwise ranker
training setup (Appendix A.2).

A.8 Error Analysis

Our pairwise ranker exhibited the following three
types of errors:

First, our model tended to incorrectly judge im-
plausible mistakes as plausible—errors that real
students would not typically make. For example,
in the process of calculating the output of Python
code, the model incorrectly deemed ‘unrealistic
reasoning’ or ‘mistakes in obvious calculations’
as plausible, even though such errors would be un-
likely for actual students to make based on common
sense.

Second, our model struggled with reasoning
when encountering unfamiliar questions that were
insufficiently represented in the training data. This
issue was particularly evident in subjects like DB
and MLDL, where the training set was relatively
small and shared few similar concepts or questions
with the test set.

Lastly, in questions requiring the selection of
an incorrect option, there were cases where our
model’s final ranking was correct, but its reasoning
was flawed. Instead of identifying why each option
seemed more incorrect to the students, the model
mistakenly focused on determining which option
was more correct.

To improve the pairwise ranker, future work
should focus on enabling the model to learn com-
mon student misconceptions for better reasoning
and prediction and enhancing the inference process
to clearly recognize question requirements.

B Distractor Generator

B.1 Prompt for Distractor Generator

The instruction prompt of our distractor generator
is in Table 23. We used the same prompt with GPT
models and ours. But we instructed to generate in
json format for GPT models for stability issue.

The instruction prompt for the kNN approach
proposed by Feng et al. (2024) is presented in Ta-
ble 24. Following the method outlined in the paper,
the target question and answer were encoded us-
ing the SBERT encoder (Reimers and Gurevych,
2019), MPNet4, and the top-3 most similar items
based on cosine similarity were extracted from the

4https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

per Question
(Win/Tie/Lose)

per Distractor
(Win/Lose)

Setting A Setting B Setting A Setting B
Ours

(DPO,
window)

Ours
(DPO,

window)

Ours
(DPO,

window)

Ours
(DPO,

window)

Python
GPT-3.5 21/13/18 30/1/20 140.5/110.5 216/173

GPT-4o 21/9/22 22/11/18 186/162 200/187

DB
GPT-3.5 4/6/3 6/1/4 33.5/25.5 42.5/33.5

GPT-4o 6/2/5 5/4/2 48.5/44.5 50.5/40.5

MLDL
GPT-3.5 7/12/12 13/2/15 60.5/72.5 136.5/107.5

GPT-4o 12/6/14 21/1/10 95.5/102.5 165/107

Table 7: Plausibility evaluation on the distractor genera-
tor, DPO with sliding window setting (Appendix B.2).

question pool (training set) and used as in-context
examples.

B.2 Distractor Generator SFT and DPO
Settings

The distractor generator model was trained using
Mistral-7B-Instruct-v0.2 with 4-bit quantization
and fine-tuned using LoRA. For SFT, the learning
rate was set to 2e-4 and the model was trained for
2 epochs. For DPO, the learning rate was set to
1e-5, trained for 3 epochs. These hyperparameters
were determined as a result of finding a setup that
avoids overfitting while ensuring no issues with
the quality of the DPO output. SFT and DPO took
approximately 3 hours on an NVIDIA A6000 GPU.

As briefly mentioned in §3.4, in addition to the
chosen-rejected sample pairing method described
in the main text, another setting employs a method
similar to a sliding window for pairing. In this
setting, all distractor candidates are sorted in de-
scending order and grouped into non-overlapping
windows of size n. For example, if there are six
candidates and n is 2, a total of three windows
are created. Pairwise combinations between these
windows are then used to create chosen-rejected
samples. A model trained with DPO using these
samples showed no significant performance differ-
ence compared to the model described in the main
text. The plausibility evaluation results for this
model are provided in Table 7.

B.3 Experiment - Plausibility
per Question The results of the plausibility eval-
uation analyzed from a per-question perspective
are presented in Table 8 (compare with Table 4).

Case Study The analysis of plausibility results
based on question types (Code/Statement) is pro-
vided in Table 9. A summary of the case study

12

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

per Question (Win/Tie/Lose)
Setting A Setting B

Ours
(SFT)

Ours
(DPO)

Ours
(SFT)

Ours
(DPO)

Python

GPT-3.5 17/13/22 23/15/14 21/7/22 26/1/23
GPT-4o 12/15/25 24/12/16 19/6/26 24/4/22
Feng et al. (2024) 14/21/17 21/15/15 16/5/28 25/2/21
Human-Authored 21/11/20 27/10/15 31/5/15 26/4/20

DB

GPT-3.5 3/3/7 6/2/5 4/1/5 6/1/4
GPT-4o 4/1/8 4/3/6 5/0/6 6/0/5
Feng et al. (2024) 3/3/7 6/3/4 6/1/3 6/0/4
Human-Authored 1/1/11 4/0/9 5/1/7 4/2/7

MLDL

GPT-3.5 9/12/10 12/13/6 12/1/17 18/2/10
GPT-4o 11/4/17 12/7/12 13/4/15 19/7/5
Feng et al. (2024) 11/6/14 15/6/9 17/0/15 18/3/10
Human-Authored 11/4/17 9/7/16 11/3/18 15/2/4

Table 8: Plausibility evaluation on distractor generators.

results is as follows:
First, our model generates more plausible dis-

tractors for code type questions compared to GPT-
3.5-turbo. The distractors generated by the latter
were either significantly different from the correct
answer or included code syntax that does not ac-
tually exist. On the other hand, for the statement
type questions, GPT-3.5-turbo demonstrated higher
plausibility only in the cases of Python and DB.
This was because its distractors included more di-
verse knowledge or additional conditions, while
our model seemed to construct distractors with rel-
atively limited scope of knowledge, possibly due
to the small training dataset.

Next, our model exhibited higher plausibility in
the statement type compared to GPT-4o. When
compared with the validity results in Appendix B.6
(Statement), it can be seen that GPT-4o gener-
ated more obvious statements, resulting in a lower
risk of invalid distractors but making the difficulty
level lower. For the code type, both models gener-
ated distractors that were not far from the correct
answer. However, in the case of Python, the dis-
tractors generated by our model were slightly less
plausible than those of GPT-4o, likely because the
latter made better use of partial errors in the code.

B.4 Human Evaluation

Recruitment We conducted the evaluation with
15 college students who voluntarily agreed to par-
ticipate. The test was conducted online, and par-
ticipants were allowed to begin the test only after
agreeing to the instruction stating that their results
would be provided for research purposes. The ex-
periment took approximately 60 minutes, and par-
ticipants were compensated with a reward above

per Question
(Win/Lose)

per Distractor
(Win/Lose)

Code State. Code State.

Python
GPT-3.5 12/5 14/18 86.5/52.5 111.5/137.5

GPT-4o 6/11 18/11 58.5/70.5 142/115

DB
GPT-3.5 4/0 2/4 22.5/8.5 11.5/33.5

GPT-4o 2/2 4/3 20/16 27/23

MLDL
GPT-3.5 - 18/10 - 150/89

GPT-4o - 19/5 - 167/99

Table 9: Plausibility evaluation on the distractor gen-
erator, categorized by question type. This table further
details the results from Table 4 and 8, Setting B, Ours
(DPO).

sB↑ BS↑
Python DB MLDL Python DB MLDL

GPT-3.5 12.572 16.794 10.133 0.879 0.893 0.873

GPT-4o 15.387 24.752 16.120 0.893 0.912 0.882
Mistral 11.192 14.642 10.850 0.859 0.872 0.863

Ours (SFT) 16.859 20.892 14.752 0.894 0.897 0.876

Ours (DPO) 18.313 26.322 16.476 0.896 0.906 0.881

Table 10: Text similarity evaluation on distractor gener-
ators. sB refers to sBLEU, BS refers to BERTScore.

the standard hourly wage for their time. The entire
human evaluation process was conducted in accor-
dance with the procedures approved by the IRB
committee of our university.

Test Form Each question allows for multiple se-
lections (e.g., Select all the correct/incorrect ...) and
includes one distractor generated by each model,
along with ‘None of the above’ as the final option.
To mitigate unintended effects on the selection rate
of distractors when the actual correct answer is
included, two versions of each question were cre-
ated: one with the correct answer included and one
without. These versions were randomly distributed.
For analysis, the results from both versions were
integrated.

DI To analyze the DI of a specific model, it is
necessary to assume that each item consists solely
of options generated by that model. Therefore, we
restructured the test results by treating each distrac-
tor generated by a model as a separate test item that
determines ‘whether the corresponding statement
(distractor) is true or false’. In other words, we as-
sumed that all students took multiple independent
tests, each consisting of items created exclusively
with distractors from a single model. When grad-

13

Correct Incorrect Code Statement

Python DB MLDL Python DB MLDL Python DB MLDL Python DB MLDL

GPT-3.5 0.883 0.571 0.938 0.400 1.000 0.426 0.877 0.630 - 0.588 0.630 0.684

GPT-4o 0.938 1.000 0.902 0.967 0.917 0.956 0.912 0.917 - 0.970 0.963 0.927

Mistral (w/o T) 0.839 0.227 0.820 0.233 0.917 0.370 0.815 0.917 - 0.485 0.357 0.604

Mistral (w/ T) 0.903 0.364 0.822 0.265 0.750 0.378 0.891 0.750 - 0.500 0.464 0.600

Ours (SFT) 0.874 0.905 0.765 0.902 1.000 0.844 0.842 1.000 - 0.909 0.926 0.802

Ours (DPO) 0.839 0.905 0.627 0.850 0.917 0.800 0.875 0.917 - 0.825 0.889 0.708

Ablation (SFT) 0.783 0.778 0.608 0.733 0.810 0.822 0.717 0.833 - 0.788 0.778 0.708

Ablation (DPO) 0.848 0.722 0.627 0.717 0.905 0.733 0.811 0.750 - 0.788 0.852 0.677

Table 11: Validity evaluation on distractor generators. Each question can be categorized as either Correct/Incorrect
or as Code/Statement. Correct and Incorrect refer to question types such as selecting the correct/incorrect statement,
respectively. Code type question indicates cases where the answer (and distractor) is in the form of filling in blanks
or matching outputs in code, and Statement refers to cases composed of explanatory statements about a concept.
Mistral is a model that has not been fine-tuned, w/o T is the result of using a prompt that generates distractors
directly without specifying the distractor type, and w/ T is the result using the same prompt as Ours.

ing, if a student chose the distractor generated by
the model, the item was considered incorrect; oth-
erwise, it was considered correct. The cutoff for
dividing students into high and low groups was
set at the top and bottom 27%, and the DI calcula-
tion formula was also in line with previous studies
(Mahjabeen et al., 2017; Rezigalla et al., 2024).

B.5 Additional Evaluation - Text Similarity

Table 10 presents the text similarity evaluation re-
sults for the distractor generator. sBLEU5 and
BERTScore6 were used as the text similarity met-
rics. For sBLEU, the ‘smooth_method’ was set
to ‘exp’, and the default parameters were used for
BERTScore. In terms of sBLEU, our model (DPO)
generates distractors that are most similar to human-
authored ones across the majority of subjects.

B.6 Additional Evaluation - Validity

Validity refers to whether the distractors are in-
deed incorrect options for the question. Table 11
shows the proportion of valid distractors gener-
ated by each model according to the type of ques-
tion. Our models demonstrate stable validity across
various question types (e.g., Correct/Incorrect,
Code/Statement), significantly outperforming GPT-
3.5-turbo and pre-trained Mistral. This highlights
the importance of the proposed methodology—first
generating the type (T) such as ‘Correct/Incorrect
knowledge’—in enhancing validity.

5https://github.com/mjpost/sacrebleu
6https://github.com/Tiiiger/bert_score

per Question
(Win/Tie/Lose)

per Distractor
(Win/Lose)

Ablation
(SFT)

Ablation
(DPO)

Ablation
(SFT)

Ablation
(DPO)

Python
GPT-3.5 15/14/23 20/13/19 98.5/121.5 115.5/122
GPT-4o 14/11/27 18/9/25 122/179 135.5/184.5

DB
GPT-3.5 5/5/3 3/4/6 29/21 25.5/26.5
GPT-4o 7/1/5 4/4/5 46.5/36 42/44

MLDL
GPT-3.5 8/10/13 9/9/13 55/70.5 52/66
GPT-4o 13/7/12 15/8/9 87.5/104.5 95.5/82

Table 12: Ablation study on our distractor generator.
The evaluation setup is the same as Setting A in Table 4.

Studies have shown that LLMs perform poorly
on tasks involving negation (Varshney et al., 2024),
and in a similar vein, GPT-3.5-turbo and Mistral
show significantly lower validity when generating
distractors for question types that require select-
ing an incorrect option (in Incorrect type, the dis-
tractors should actually represent correct knowl-
edge, but these models mostly generated distrac-
tors with incorrect knowledge). However, after
going through SFT and DPO, the proportion of
valid distractors generated for such types greatly
increases, indicating that the proposed methodol-
ogy in this study (first generating types such as
‘Correct/Incorrect knowledge’) plays an important
role in improving validity. Meanwhile, there is a
slight decrease in validity after DPO compared to
SFT, which appears to be a trade-off arising from
the process of creating more confusing distractors.

14

https://github.com/mjpost/sacrebleu
https://github.com/Tiiiger/bert_score

B.7 Ablation Study

The training settings used for the ablation study
are identical to those of our distractor generator
training setup (Appendix B.2), except that the base
MCQ dataset was used as the training data instead
of the student choice dataset. Table 12 presents the
results of the ablation study (compare with Table 4
and 8).

B.8 Error Analysis

Analyzing the low-quality samples generated by
our distractor generator revealed the following
types of errors:

First, the model sometimes failed to produce
the specified number of distractors based on the
input parameter n, or it created duplicate distractors
among the outputs.

Next, for code type questions, the generated dis-
tractors lacked diversity in output formats and often
made minimal changes, such as altering only one
or two variables, resulting in repetitive and insuffi-
ciently varied distractors.

Meanwhile, for statement type questions, the
model overly mimicked the correct answer, creat-
ing distractors based on only one or two concepts,
while failing to effectively incorporate other related
concepts.

Future work to improve the distractor generator
could involve explicitly providing the model with
information on similar concepts or common errors
that students are likely to confuse.

B.9 GPT Prompt for Distractor Validity
Check

The instruction prompt for checking validity of
distractors is in Table 25. If the output is ‘invalid’
(as it is an incorrect option for the question), it is
considered a distractor.

C Base MCQ Dataset

We were provided with an MCQ dataset by an on-
line learning platform for educational research pur-
poses and processed it for use within the scope of
the provided purpose. The questions and options,
originally in Korean, were translated into English
for experimental purposes. The provided MCQ
data does not contain any personally identifiable
information about the individuals who answered
the questions, and we manually checked to confirm
that the text does not include any offensive content.

D GPT Prompt for Augmenting
Distractors in Base MCQ Dataset

The instruction prompt for augmenting distractors
in base MCQ dataset is in Table 26. Through this
prompt, the student choice dataset was constructed
only when at least one newly generated distractor
by GPT-4o was valid and did not overlap with the
original.

E Potential Issues

MCQs serve as a tool for assessing students’ knowl-
edge, so the options must be based on accurate
information (i.e., both the correct answer and dis-
tractors must be valid). As mentioned earlier in
the limitations, distractors generated by the model
may not be actual incorrect options to the question.
To proactively address the potential issue, we ex-
plored methodologies to ensure the validity of the
distractors generated by the model. As part of these
efforts, we implemented instruction prompts and
output formats for the model to classify the type
(T) of distractors, thereby mitigating this issue.

We used selection rate data from questions an-
swered by hundreds of students to ensure the reli-
ability of common misconception information for
training the pairwise ranker. However, since mis-
conceptions can vary by learning level or educa-
tional environment, the model’s reasoning may not
generalize to other populations. To make accurate
predictions for a target population, selection rates
specific to that group should be used.

15

Pairwise Ranker Prompt (Reasoning)

[INST] You are a teacher analyzing which distractor in a given Multiple Choice Question is more confusing for students
and why. Your review should include the following content in one paragraph:
- Describe a realistic process of solving the problem from a student’s perspective as you look at each distractor.
- Consider why it might be plausible as the correct/incorrect statement, based on students’ misconceptions, mistakes,
intuition, etc., from various angles.
Output your choice as a single token, either A or B, that students are more likely to choose.

[Question] {question}
[Answer] {answer}
[Distractor A] {distractor}
[Distractor B] {distractor}

Generate in the following format:
Review:
Choice: [/INST]

Table 13: Instruction prompt (Reasoning) for pairwise ranker.

Pairwise Ranker Prompt (Rubric)

Analyze which side of the given Multiple Choice Question distractor pair is more confusing and plausible to students
based on the given rubric.

[Question] {question}
[Answer] {answer}
[Distractor A] {distractor}
[Distractor B] {distractor}

Evaluation Rubric:
[1]. Conceptual Misunderstandings: Evaluate if the distractor addresses into specific misconceptions or partial
understandings related to the question.
[2]. Similarity to Correct Answer: Assess how closely the distractor resembles the correct answer, either in structure,
terminology, or context.
[3]. Intuitive Appeal: Analyze if the distractor seems logical or intuitively correct based on common language use or
student intuition.

Generation Guide:
- [n]: For each evaluation criterion, review in one sentence how each distractor may or may not confuse students.
- [Summary]: Summarize the review, and choose more confusing and plausible distractor.
- [Choice]: Output your choice as a single token, either A or B.

Generate in the following format:
[1]:
[2]:
[3]:
[Summary]:
[Choice]:

Table 14: Instruction prompt (Rubric) for pairwise ranker.

16

Pairwise Ranker Prompt (G-Eval)

You will be given one multiple-choice question (MCQ) and two distractors. Your task is to choose one distractor based on
the metric.
Please make sure you read and understand these instructions carefully. Please keep this document open while reviewing,
and refer to it as needed.

Evaluation Criteria:
Plausibility: This metric indicates how likely students are to feel that the distractor is the correct answer and choose it. A
distractor with high plausibility is similar in form to the correct answer or contains common misconceptions and mistakes,
making students more likely to select it.

Evaluation Steps:
1. Read the MCQ carefully and think about the relevant misconceptions or mistakes related to the question from your
perspective as a teacher.
2. Judge how plausible and confusing the distractor would be from a student’s perspective.
3. Choose one distractor based on Evaluation Criteria. Output your choice as a single token, either A or B.

[Question] {question}
[Answer] {answer}
[Distractor A] {distractor}
[Distractor B] {distractor}

Evaluation Form (A or B ONLY):
- Choice:

Table 15: Instruction prompt (G-Eval) for pairwise ranker.

17

Pairwise Ranker Prompt (Discussion)

<Prompt - Student>
Play the role of students with three different levels of proficiency: A is low, B is medium, and C is high.
A lower proficiency level indicates more confusion about the concept, while a higher proficiency level indicates a better
understanding of the related knowledge.
- In a cooperative learning situation, three students with different levels of proficiency are discussing and solving a given
problem together.
- For each option in the MCQ, share your thoughts according to each proficiency level. Discuss similar concepts and any
confused or mistaken knowledge, ask for help, give advice, and interact actively.
- Having a high proficiency level does not mean knowing the correct answer. However, they have better problem-solving
skills through reasonable inference.
- Take turns speaking equally among the low, medium, and high proficiency students. Use natural transitions like ’Shall
we talk about this option next?’ to keep the discussion flowing smoothly. End the discussion after discussing all the options.

[Question] {question}
[Options] {distractors}

Output the result in the following format:
[A]: "..."
[B]: "..."
[C]: "..."

<Prompt - Teacher>
Act as teachers discussing and judging the plausibility (whether it would confuse students) score of each distractor in a
given MCQ.
- First, analyze the collaborative learning records of three students. Then, as the first teacher, choose between distractors A
and B, deciding which one is more likely to confuse students or be frequently selected by them.
- As the second teacher, share your thoughts and provide reasonable counterarguments. Use the collaborative learning
records of the three students as supporting evidence for your scoring. The second teacher should always question the
initial score, challenge generalized assumptions, and argue which distractor is more plausible.
- Take turns discussing and adjusting the choice.
- The utterances must be clear and concise.

[Question] {question}
[Answer] {answer}
[Cooperative Learning Records] {cooperative learning records}
[Distractor A] {distractor}
[Distractor B] {distractor}
[Discussion History] {history}

A conclusion must be reached within a maximum of 5 utterances, taking into account both [T1] and [T2] com-
bined.
Once you both agree on the final choice, output ### Choice: A or ### Choice: B.
Generate the next utterance in the discussion based on the discussion history:
[T1 or T2]: "..."

Table 16: Instruction prompt (Discussion) for pairwise ranker.

Pairwise Ranker Prompt (Scarlatos et al., 2024)

[INST] A teacher assigns the following programming question to the students.
Question: {question}
Correct answer: {answer}
Generate a distractor for this question that targets some student misconception.
Distractor: [/INST] {distractor}

Table 17: Instruction prompt (Scarlatos et al., 2024) for pairwise ranker.

18

Prompt for Making Pairwise Ranker Training Data

You are a teacher analyzing which distractor in a given Multiple Choice Question is more confusing for students and why.
Your review should include the following content in one paragraph:
- Describe a realistic process of solving the problem from a student’s perspective as you look at each distractor. Consider
why it might be plausible as the correct/incorrect statement, based on students’ misconceptions, mistakes, intuition, etc.,
from various angles.
- Output your choice as a single token, either A or B, that students are more likely to choose.

[Question] {question}
[Answer] {answer}
[Distractor A] {distractor a}
[Distractor B] {distractor b}
Distractor chosen more frequently by actual students:{a or b}

Make sure your choice matches the distractor most frequently chosen by actual students. However, you must
not mention this information as if you originally knew it.
Generate in the following format:
Review:
Choice:

Table 18: Intruction prompt for making pairwise ranker training data.

Category Definition

Operation Confusion Distractors that involve misunderstanding of specific operations, such as incorrect assump-
tions about function outputs or operation precedence.

Structure Error Distractors reflecting improper syntax or structural misunderstandings.

Calculation Mistake Distractors that exploit errors in arithmetic, index calculations, or logical evaluations, leading
to incorrect results.

Syntax Familiarity Distractors that align with common syntax conventions or structures from Python or other
programming languages, leading to confusion due to familiarity.

Logical Consistency Distractors that maintain a consistent or plausible logic or pattern, even if incorrect, which
can mislead students who are not fully confident in their understanding.

Additional Conditions Distractors that introduce extra conditions or columns, which may lead students to misinter-
pret the problem as requiring more complex logic, thus creating confusion.

Table 19: Definitions of plausibility factors of code type question.

Category Definition

Ambiguity and
Complexity

Distractors that introduce nuanced or ambiguous details, leading to confusion and misinter-
pretation due to their complexity or lack of clarity.

Conceptual Overlap Distractors that involve concepts or operations that overlap with other similar terms, causing
students to conflate them and mistakenly believe they are correct.

Familiarity Traps Distractors that use familiar terms or straightforward statements, making them seem correct
at first glance and less likely to be critically analyzed by students.

Partial Understanding Distractors built on incomplete knowledge, leading students to make errors due to gaps in
conceptual clarity.

Overgeneralization Distractors that appear plausible by relying on students’ tendency to apply learned concepts
too broadly without verifying their validity in specific contexts.

Practical Experience Distractors that leverage students’ familiarity with common tasks, such as data manipulation
or querying, creating false confidence in their correctness.

Table 20: Definitions of plausibility factors of statement type question.

19

Human Evaluation Survey Form

<Guideline>
The following provides a programming multiple-choice question, along with an analysis (review) that predicts which of
the two incorrect options is more challenging for students (i.e., more likely to be chosen). You are tasked with evalu-
ating the quality of the analysis from the perspective of an education expert and stating whether you agree with the analysis.

Provided Items:
[Question]: The question
[Answer]: The correct answer
[Distractor A and B]: The two incorrect options, A and B
[Review]: An analysis of which incorrect option (A or B) would be more confusing (more likely to be chosen) by students,
along with the final selection

Evaluation Criteria:
- Logical Reasoning: Whether the reasoning process is logical.
- Student Understanding: Whether the reasoning effectively understands students’ misconceptions or problem-solving
processes.
- Knowledge Accuracy: Whether the reasoning is based on accurate and error-free knowledge.
- Choice Agreement: Whether the evaluator agrees with the model’s final choice.

<Item>
[Question] {question}
[Answer] {answer}
[Distractor A] {distractor}
[Distractor B] {distractor}
[Review] {model’s reasoning}

- The reasoning process in the review is logical.
| 1. Strongly Disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly Agree |
- The review demonstrates a good understanding of actual student misconceptions or problem-solving processes.
| 1. Strongly Disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly Agree |
- The review is based on accurate and error-free knowledge.
| 1. Strongly Disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly Agree |
- I agree with the final choice in the review.
| 1. Strongly Disagree | 2. Disagree | 3. Neutral | 4. Agree | 5. Strongly Agree |

Table 21: Survey form for human evaluation on the pairwise ranker. The original guideline in Korean has been
translated into English.

Pairwise Ranker Prompt (Ablation Study, w/o Reasoning)

[INST] You are a teacher analyzing which distractor in a given Multiple Choice Question is more confusing for students.
Output your choice as a single token, either A or B, that students are more likely to choose.

[Question] {question}
[Answer] {answer}
[Distractor A] {distractor}
[Distractor B] {distractor}

Generate in the following format:
Choice: [/INST]

Table 22: Instruction prompt for ablation study on the pairwise ranker.

20

Distractor Generator Prompt (Ours)

[INST] You are a teacher tasked with creating distractors (plausible wrong options) for a given Multiple Choice Question.
Generate distractors according to the guide below:
1) Distractor type:
- Analyze whether the question asks for a ‘correct’ or ‘incorrect’ option.
- If the question asks for a correct option, the distractor type should be "Incorrect knowledge"; if it asks for an incorrect
option, the distractor type should be "Correct knowledge".
2) Distractors:
- The distractor should be well-formatted so that it fits naturally when presented together with the question and answer.
- If the distractor type is "Incorrect knowledge", the distractor must be an actually incorrect statement; if the distractor type
is "Correct knowledge", the distractor must be an actually correct statement.

[Question] {question}
[Answer] {answer}

Generate {n} distractor(s) in the following format:
Type:
Distractor n: [/INST]

Table 23: Instruction prompt for distractor generator (Ours).

Distractor Generator Prompt (kNN approach by Feng et al. (2024))

Question: {in-context question}
Answer: {in-context answer}
Distractor1: {in-context distractor}
Distractor2: {in-context distractor}
Distractor3: {in-context distractor}

Question: {in-context question}
Answer: {in-context answer}
Distractor1: {in-context distractor}
Distractor2: {in-context distractor}
Distractor3: {in-context distractor}

Question: {in-context question}
Answer: {in-context answer}
Distractor1: {in-context distractor}
Distractor2: {in-context distractor}
Distractor3: {in-context distractor}

Referencing the above samples, generate 3 distractors.
Question: {question}
Answer: {answer}
Distractor1:
Distractor2:
Distractor3:

Table 24: Instruction prompt for distractor generator (kNN approach).

21

Prompt for Distractor Validity Check

Check if the given option is the correct choice in a multiple-choice question (MCQ).
1. Check whether the question asks for a ‘correct’ or ‘incorrect’ option. If the question asks for a correct option, label
"type" as "asking correct option." If the question asks for an incorrect option, label "type" as "asking incorrect option."
2. Insert the given option into the question and analyze whether it is the correct choice.
3. Based on the analysis, if the option is the correct answer to the question, label it as "valid." If it is not the correct answer,
label it as "invalid."

[Question] {question}
[Option] {distractor}

Output according to the following JSON format:
{{
"type": "asking correct option" or "asking incorrect option",
"analysis": "your analysis in one sentence",
"validity": "valid" or "invalid"
}}

Table 25: Instruction prompt for distractor validity check.

Prompt for Augmenting Distractors in Base MCQ Dataset

You are a teacher tasked with creating distractors (plausible wrong options) for a given Multiple Choice Question.
Generate distractors according to the guide below:
1) Distractor type:
- Analyze whether the question asks for a ‘correct’ or ‘incorrect’ option.
- If the question asks for a correct option, the distractor type should be "Incorrect knowledge"; if it asks for an incorrect
option, the distractor type should be "Correct knowledge".
2) Distractors:
- The distractor should be well-formatted so that it fits naturally when presented together with the question and answer.
- If the distractor type is "Incorrect knowledge", the distractor must be an actually incorrect statement; if the distractor type
is "Correct knowledge", the distractor must be an actually correct statement.
- Refer to the original distractors provided.

[Question] {question}
[Answer] {answer}
[Original Distractors] {distractors}

Generate 3 new distractor(s) in the following JSON format:
{{
"type": "Incorrect knowledge" or "Correct knowledge",
"distractor_n": "n-th distractor in string type",
...
}}

Table 26: Instruction prompt for augmenting distractors in base MCQ dataset.

22

	Introduction
	Related Works
	Distractor Generation
	Pairwise Ranker

	Methods
	Base MCQ Dataset
	Pairwise Ranker
	Student Choice Dataset
	Distractor Generator

	Experiment Settings
	Model Training
	Pairwise Ranker
	Distractor Generator

	Experiment Results
	Pairwise Ranker
	Distractor Generator

	Conclusion
	Pairwise Ranker
	Prompt of Pairwise Ranker
	Pairwise Ranker SFT and DPO Settings
	GPT Prompt for Making Pairwise Ranker Training Data
	Experiment - Consistency in Rank Prediction
	Plausibility Factors
	Human Evaluation
	Ablation Study
	Error Analysis

	Distractor Generator
	Prompt for Distractor Generator
	Distractor Generator SFT and DPO Settings
	Experiment - Plausibility
	Human Evaluation
	Additional Evaluation - Text Similarity
	Additional Evaluation - Validity
	Ablation Study
	Error Analysis
	GPT Prompt for Distractor Validity Check

	Base MCQ Dataset
	GPT Prompt for Augmenting Distractors in Base MCQ Dataset
	Potential Issues

