Pipeline for Expediting Learning Analytics and Student Support from Data in Social Learning

Yohan Jo, Gaurav Tomar, Oliver Ferschke, Carolyn P. Rosé, Dragan Gašević {yohanj, gtomar, ferschke, cprose}@cs.cmu.edu, dgasevic@acm.org

Motivation

- The goal is to tighten the analytics cycle of data leading to insights on student needs and improvements in student support.
- We focus on social learning, where students learn through social interaction, e.g., via observation, help exchange, and discussion.

Contributions

- Propose a pipeline and component models for data infrastructure, learning process analysis, and intervention.
- Demonstrate an application of the pipeline to real data to examine goal-setting behavior as qualifications of role models.

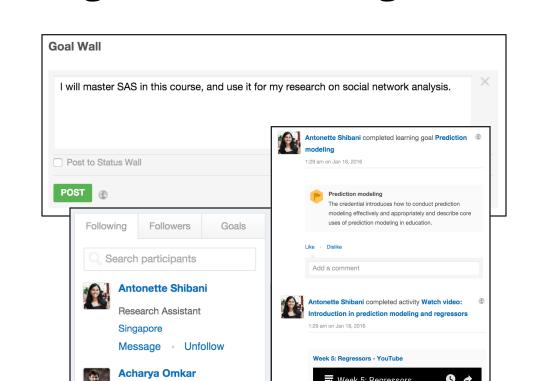
Course Context

edX **Conventional xMOOC Platform**

Period: Oct-Dec, 2014 Number of Students

edX: 23,000 ProSolo: 1,700

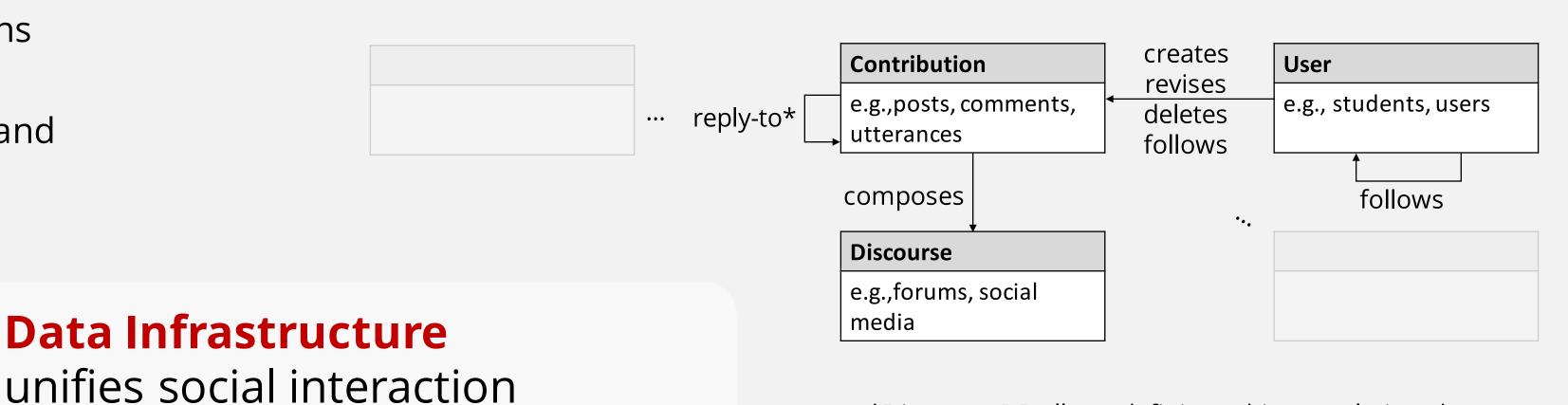
Self-Regulated Learning Platform



DiscourseDB (http://discoursedb.github.io)

- Maps diverse forms of textual conversations and social interactions into a common structure.
- Enables the subsequent components—learning process analysis and intervention—to apply the same tools to different data with little modification.
- Allows annotating entities and text spans manually or automatically.
- Keeps track of changes in relationships between entities and in the content of textual contributions.

Entity-Relation Model



*DiscourseDB allows defining arbitrary relations between contributions, avoiding data-specific tables.

Temporal Bayesian Network

- Represents the building blocks (states) of learning process as
 - Distribution over discussion topics (θ)
 - Distribution over discussion media (ψ)
 - Transition probabilities to other states for each social connection type (π)

Learning Process Analysis models learner behaviors conditioned on social connection

Intervention

helps students engage in beneficial social interaction

into a uniform interface

 Draws upon insights from the learning process analysis and aims to foster beneficial social connection among students.

Recommends discussions to qualified students.

Recommender System

 Allows the discussants to interact with the qualified students.

Discussion Media (e.g.)

Blog, Twitter, Forum

Social Connection Types (e.g.)

- Follows goal-setting peers
- Follows no one

Input

Each student's discussions and social connection types over time

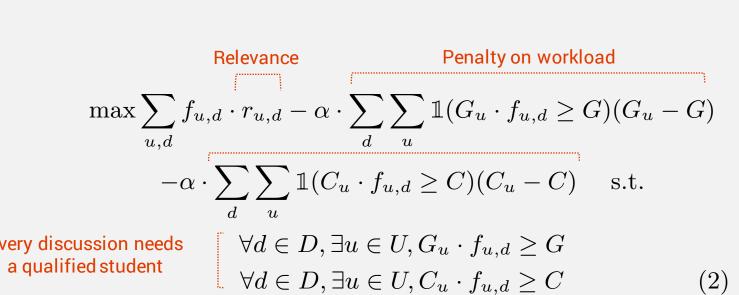
Output • For each state: discussion topics and media, state transition probabilities

For each student: state sequence

Relevance Prediction

- Relevance between students and discussions is calculated using:
- Students' expertise & motivation.
- Discussion's length & popularity.

$\hat{r}_{u,d} = bias + (P_u + \phi_u \Phi + \theta_u \Theta + \lambda_u \Lambda + \psi_u \Psi + \Gamma_{\gamma})^T$ $(Q_d + \delta_d \Delta + l_d L + \frac{1}{\sqrt{|U(d)|}} \sum_{v \in U(d)} \varphi_v).$



Constraint Filtering

- Helpful recommendation also requires constraints:
- Every discussion has at least one qualified student.
- A student is not overloaded.

Findings from Application

- Learning process analysis finds that students who follow goal-setting peers show positive learning behaviors:
 - Stay long in the course.
 - Engage in hands-on practices.
 - Revisit learning materials across the course.
- **Recommender system** finds that
 - Explicit intervention is necessary for helping students be aware of qualified students and interact with them.
 - Our algorithm effectively matches qualified students to relevant discussions while satisfying the constraints.
- **DiscourseDB** eases similar analysis and intervention on different data.

References

- **Detailed Article:** Y. Jo, G. Tomar, O. Ferschke, C. P. Rose, D. Gasevic. Expediting Support for Social Learning with Behavior Modeling, *EDM* '16.
- **Learning Process Model:** Y. Jo and C. P. Rose. Time Series Analysis of Nursing Notes for Mortality Prediction via a State Transition Topic Model. CIKM'15.
- Recommendation Model: D. Yang, D. Adamson, C. P. Rose. Question recommendation with constraints for massive open online courses. RecSys'14.
- Course: C. P. Rose, O. Ferschke, G. Tomar, D. Yang, I. Howley, V. Aleven, G. Siemens, M. Crosslin, D. Gasevic, and R. Baker. Challenges and Opportunities of Dual-Layer MOOCs: Reflections from an edX Deployment Study. CSCL '15.
- More Research & Resources: http://dance.cs.cmu.edu

