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ABSTRACT

Accurate mortality prediction is an important task in inten-
sive care units in order to channel prompt care to patients in
the most critical condition and to reduce nurses’ alarm fatigue.
Nursing notes carry valuable information in this regard, but
nothing has been reported about the effectiveness of temporal
analysis of nursing notes in mortality prediction tasks.

‘We propose a time series model that uncovers the temporal
dynamics of patients’ underlying states from nursing notes.
The effectiveness of this information in mortality prediction is
examined for mortality prediction for five different time spans
ranging from one day to one year. Our experiments show that
the model captures both patient states and their temporal dy-
namics that have a strong correlation with patient mortality.
The results also show that incorporating temporal informa-
tion improves performance in long-term mortality prediction,
but has no significant effect in short-term prediction.
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1. INTRODUCTION

Predicting a patient’s risk of mortality and taking appro-
priate action are important activities in intensive care units
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PROB: S/P AVR FUNCTIONAL HEALTH PATTERNS AND HISTORY COMPLETED IN CHART.
NEURO: PT AWAKE, FOLLOWING COMMANDS. MAE, NODS APPROPRIATELY. PERL.

CV: SR NO VEA NOTED. CONT ON MILRINONE AND NEO. CO/CI [**7-26**]. K
REPLACED MULTIPLE TIMES. CT DRAINING S/S DRAINAGE. PACER OFF. MORPHINE
FOR PAIN X3 WITH GOOD EFFECT.

RESP: PT WEANING. LUNGS WITH WHEEZES, CLEARED WITH COMBIVENT INHALER.
SUCTION FOR THICK CLEAR/YELLOW SPUTUM. PT STILL ACIDOTIC, IMV 16, TV 700.
GI: NGT TO LOW CONT SUCTION, NO DRAINAGE,

ENDO: INITIAL BS ELEVATED AND TREATED PER PROTOCOL.

GU: ADEQUATE AMOUNT OF CLEAR YELLOW URINE. PLACEMENT CHECKED-GOOD.
SOCIAL: FAMILY HERE TO VISIT.

ASSESSMENT: WEANING SLOWLY

PLAN: RECHECK ABGS, LYTES. SUCTION PRN. MED FOR PAIN. CONT VENT WEAN.

Figure 1: Example Nursing Note

(ICUs). High accuracy in mortality prediction helps nurses
manage patient care by placing patients in different priority
queues. It also enhances nurses’ efficiency by reducing the
number of false alarms, which cause them alarm fatigue and
desensitize them to real alarms [6]. In this respect, nursing
notes contain valuable information to inform more accurate
prediction models. This information includes nurses’ obser-
vations and intuitions that do not fit into the accompanying
recorded structured data. Nursing notes have the potential
to uncover hidden clues about a patient’s health and mental
state as they change over time, such as the factors of family
support and mental fitness (Figure 1).

However, the potential of nursing notes in informing mor-
tality prediction has started to be investigated only recently
[8, 14]. Furthermore, there is no previous work on temporal
analysis of nursing notes and its use for mortality predic-
tion, while time series analysis of patient signals and clinical
data has shown a lot of benefits in patient outcome predic-
tion [5, 23, 13, 18]. Hence, this paper offers the following
contributions to this important research field.

e Proposes and evaluates a model to uncover the temporal
dynamics of underlying patient states from nursing notes.

e Evaluates the effectiveness of the identified temporal dy-
namics for improving mortality prediction.

e Offers qualitative insight into different types of textual
features regarding their roles in mortality prediction.

We propose a novel and intuitive model that combines a
hidden Markov model (HMM) and latent Dirichlet alloca-
tion (LDA) [4]. This model assumes that there are a set
of underlying patient states, and every pair of states has a
meaningful transition probability. Each state is represented
by a topic distribution, from which nursing notes are gen-
erated. The model, when applied to nursing notes, learns
topics embedded in nursing notes, the topic distribution of
each state and each nursing note, and state transition prob-



abilities. We can also estimate a sequence of states each
patient is identified as having transitioned through, which
is then used for mortality prediction. This model is general
enough to be applied for the purpose of identifying tem-
poral dynamics in any text stream. Our simple and general
model shows effectiveness in uncovering latent patient states
in nursing notes and improving mortality prediction. The
model is described in detail in Section 4.

Three tasks are evaluated in order to validate the learned
temporal information and its benefit for mortality predic-
tion. In Task 1 (Section 6.1), we qualitatively describe the
learned topics, underlying patient states, and state tran-
sition patterns revealed from ICU nursing notes. In Task
2 (Section 6.2), we perform mortality prediction and show
that including the temporal information achieves a signifi-
cant improvement for long-term predictions, but little effect
in short-term prediction. In Task 3 (Section 6.3), we exam-
ine individual textual features more in detail. Along with
the temporal information, we investigate two other types
of textual features—mn-grams and standard topics—with re-
spect to their roles and limitations in mortality prediction.
To the best of our knowledge, this article is the most compre-
hensive treatment of the use of textual features for mortality
prediction to date.

We first introduce related work (Section 2) and formally
define the problem (Section 3). Next, we explain our model
in detail (Section 4). For experiments, we first describe the
experimental settings (Section 5), and perform the three tasks
aforementioned (Section 6). Finally, we conclude the paper by
summarizing the findings and discuss limitations (Section 7).

2. RELATED WORK

This section describes previous work on patient mortality
prediction based on free-text medical documents and joint
models of topics and time. Only recently did free-text med-
ical documents—nursing notes, discharge summaries, labo-
ratory test reports, radiology reports, etc.— start to be em-
ployed for mortality prediction [14, 8]. These studies used
medical notes from MIMIC II Clinical Database and em-
ployed topic modeling approaches. Specifically, Lehman et
al. [14] extracted topics from nursing notes using the hi-
erarchical Dirichlet process [19] and used the learned topic
distributions as input to logistic linear regression for pre-
dicting each patient’s mortality. Ghassemi et al. [8], whose
work is the most related work with ours, took a similar ap-
proach, except that they learned topics using latent Dirichlet
allocation and used a support vector machine for mortality
prediction. These studies showed the promise of nursing
notes, with which they achieved higher accuracy in mortal-
ity prediction than with admission-time patient information
such as ages and Simplified Acute Physiology Scores. Our
work adopts these approaches as baselines.

This paper presents the first work to model the tempo-
ral dynamics of patients’ states from nursing notes and ap-
ply this information to mortality prediction. The work by
Ghassemi et al. [8] and our work are different in several
aspects. Their work used nursing notes, laboratory test re-
sults, and radiology reports, but our work focuses only on
nursing notes. Also, they excluded NICU (neonatal ICU)
patients, but we include all types of patients. This actu-
ally reveals an interesting pattern of NICU patients in their
state transitions. Their work made prediction for in-hospital
and post-discharge mortality, but our work predicts 1-day,

1-week, 1-month, 6-month, and 1-year mortality, which may
be of more interest to patients, families, and nurses and doc-
tors for taking appropriate action.

There have been a lot of efforts to incorporate temporal
aspects into topic models for other types of text. One big
category of prior approaches attempts to model topic evo-
lution over time [2, 7, 11, 15]. Under the assumption that
the language models of topics change over time, these mod-
els discover topic dynamics from time-stamped documents.
Our work is not aiming at modeling topic evolution. Some
other models instead assume that topic popularity changes
over time [10, 21]. In these models, the probability of a
topic being manifested depends on the timestamp of the
document. This trend, however, is too general to apply to
different conditions of individual patients, and these models
do not assume any underlying states of patients. There is
also a set of segment-level time-aware topic models [3, 9, 20,
26]. These models suppose that the topic of a segment or
word is affected by the topic of the previous segment or word
within the document. This assumption is effective in mod-
eling topic consistency within a segment of text and topic
transition between segments. However, this topic transition
can hardly represent the transition of patient states.

Not as popular as the previous categories, a few topic
models consider the inter-dependency of topic distributions
between documents. These models can again be categorized
into two subgroups. In the first subgroup, the topic distribu-
tion of a document directly determines the next document’s
topic distribution usually via a transition matrix [17, 22, 25].
This assumption may be too strong for nursing notes since
the topics of a nursing note are dependent on the complex
details of a patients’ condition, rather than being unambigu-
ously determined by the previous note’s topic distribution.
Indeed, the mixed membership Markov model [17] did not
produce interpretable state sequences and performed poorly
in mortality prediction.

The second subgroup of models, to which our model be-
longs, assumes hidden underlying states, and each state is
associated with a topic distribution from which documents
are generated [24]. The state of a document is probabilisti-
cally determined by the previous document’s state. In our
task, this type of model is reasonable in that a patient’s state
is probabilistically determined by the previous state, and
each state generates documents with certain topics. Also,
the finite set of underlying states, unlike the infinite state
space of the first subgroup, makes it straightforward to draw
a state transition diagram such as Figure 4. Although the
other model in this group [24] has a similar generative pro-
cess, it assumes a set of independent state sequences, and
each sequence has no branch factors. That is, slightly dif-
ferent state paths can be made only by independent sets
of states and state sequences, which makes it nontrivial to
compare the states of different patients. This is the main
difference from our model, which assumes a shared set of
states and branch factors.

3. MORTALITY PREDICTION

We define mortality prediction as the prediction of a pa-
tient’s mortality or survival from a reference time within a
given timeframe (e.g., one day, one month, etc.) on the ba-
sis of the patient’s nursing notes up to the reference time.
The prediction task will be used to validate our model (Sec-
tion 4), which gives visibility to sequences of patients’ latent
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Figure 2: Process of Mortality Prediction

states through the interpretation of the topic distributions
of their nursing notes. The improvement over baseline in the
prediction task using this representation validates that the
patterns identified from nursing notes say something impor-
tant about the experience of patients over time.

We perform predictions in the short-term (one day and
one week) and in the long-term (one month, six months,
and one year). Figure 2 illustrates the overall prediction
process. For an ICU stay of a patient, we consider every 12
hours as one time point. Since some notes are too short or
focus only on a single topic, all nursing notes in the same
time point are merged into one document for analysis so that
the merged document can reflect the overall topics at that
time point. In this way, one sequence of composite docu-
ments is obtained for each patient. The task then is, given a
sequence of documents of a patient, to predict the patient’s
mortality or survival within a given term from the time of
the last document in the series, e.g., one week. One classifier
is made for each time point. The classifier of the i-th time
point makes prediction based on the nursing notes written
until the i-th time point. The i-th classifier is trained on
the nursing notes of all patients written during their first ¢
time points. In training, the document sequences of the pa-
tients who died within the given term are counted as positive
instances, and the other sequences negative instances.

4. STATE TRANSITION TOPIC MODEL

To extract the temporal dynamics of patients’ underlying
states from nursing notes, we propose an intuitive model
called the State Transition Topic Model (STTM). STTM is
a joint model integrating a hidden Markov model (HMM)
and latent Dirichlet allocation (LDA). Different from the
standard LDA, our model assumes latent underlying states
and transition probabilities between them. Each state is rep-
resented by a probability distribution over topics from which
a document is generated. STTM thus models hidden states
and topics simultaneously. Consider the following scenario.
A patient moves between states as time elapses according
to the Markovian assumption, i.e., following state transition
probability distributions. When a patient enters a state, a
document is generated from the state’s topic distribution
according to the LDA assumption. When applied on a set
of sequences of documents, STTM can learn a set of top-
ics that constitute the documents, the topic distribution of
each state and each document, and state transition proba-
bilities. Based on this, we can estimate a patient’s state at
each time point, producing a sequence of states for the en-
tire ICU stay. Note that this model is general enough to be
applied not only to nursing notes, but any streams of data

Figure 3: Graphical Representation of STTM.

Table 1: Meanings of Notations

i the t-th document in sequence m
wl’j‘i the i-th word in dj"*

ztml the topic assigned to w{”’i

s the state of dj"

wit all words in d}*

z?’l i the topics of all words in d}* except for wl’fi
S_(m,y) the states of all documents except for dj”
N%?]Z the number of words in dj"* assigned topic j

JZEV the number of words w assigned topic j
EJZ the number of words assigned topic j in state ¢
N ff, the number of states ¢ followed by state ¢’

points. In the following sections, we formally describe the
model and an inference method based on Gibbs sampling.

4.1 Formal Definition

Suppose that there are S states, Z topics, and W unique
words. The probability distribution over words for topic j
is denoted by ¢;, which is a W-dimensional vector, and the
probability distribution over topics at state c is denoted by
0., which is a Z-dimensional vector. The transition proba-
bility distribution of state c is denoted by 7., which is an
S-dimensional vector. We assume that all initial states come
from the “Oth” state, a special state that has no incoming
edges. Thus, 7o, represents the probability of state ¢ be-
ing an initial state. We take the full Bayesian approach,
assuming Dirichlet priors 7, «, and B for m, 6., and ¢;, re-
spectively. The graphical representation is shown in Figure
3, and the meanings of notations are listed in Table 1. The
generative process is as follows.

1. For each state ¢ =0, ..., .5,
(a) Draw a transition distribution 7. ~ Dirichlet(~y)
(b) Draw a topic distribution 6. ~ Dirichlet(c)
2. For each topic j =1,...,Z,
(a) Draw a word distribution ¢; ~ Dirichlet(3)
3. For each document at time point t = 1,2, ...,
(a) Choose a state s; ~ Categorical(ms,_,)
(b) For each word,
i. Choose a topic z ~ Categorical(fs,)
ii. Choose a word w ~ Categorical(¢-)



4.2 Inference

Gibbs sampling is used for inference. Each iteration sam-
ples z;"; and si" according to the following conditional prob-
abilities.

zZW
Nj,wz’i + ﬂ

MTZ )
>, (N2 +B)

P(Zln,l = j|z?7irwrr‘9;n) X (Nm,t’j ta

p(st" = cls—(m,0), 2t") X
D(VSF o NAE) T (S, 0V + o)
(1:[ [ (NS7 +a) ) r (Zj,(ij% +a)+ |z;n|)
Ncs,fﬂl +1(s 1 =c=s11)+
Esﬁl (Nf:f;,il +1(s7ty =c=s714) + ’Y) .

Based on the sampling results, we can estimate ¢;, 0.,
and m. as follows.

X

(Nf”k’:,c + fY)

t

bi = fov-i-ﬂ 0. . — NCSJ-Z—&-a

sw T y Ve, - b
P (NAY +8) T Y (NSZ +a)
o NZ5 +~ o N2 ta

S NS+ T S NI o)

c,c/ c,c/

where 07" is the document-wise topic distribution of di*. A
more detailed derivation process and the source code are
available on our website!.

5. EXPERIMENTAL SETTINGS

This section describes our experimental settings in detail.

5.1 Data

We use MIMIC II Clinical Database?, which contains com-
prehensive clinical data of ICU patients collected between
2001 and 2008. This database contains information such
as the demographics of de-identified patients, the records
of their ICU and hospital admissions, nursing notes and re-
ports, laboratory test results, and medications. Among this
information, we use nursing notes for mortality prediction
(Figure 1). The content usually includes the patient’s neu-
rological state, laboratory test results, medications, descrip-
tions of facial expressions, social activities, and the nurse’s
impression and plans. We exclude radiology reports to make
clear the impact of nursing notes, which are yet to be fully in-
vestigated for mortality prediction; however, in a real world
application of the technology, those reports could be used
as well to enhance the performance. Radiology reports are
different from nursing notes in that they are grounded re-
sults of radiology tests but exist only for certain types of
patients. Like the study by Ghassemi et al. [8], discharge
summaries are also excluded since they include patient out-
comes, though again, in a real world application these could
be included for long term predictions. The purpose of our
evaluation here is to evaluate one specific source of predic-
tion, not to achieve the highest possible performance that
could be achieved by including all available indicators.

Mortality prediction is meant to be performed during the
first ICU stays of patients. We thus retrieve all nursing notes

http://cs.cmu.edu/~yohanj/research/CIKM15
’http://www.physionet.org

Table 2: Data Statistics
(a) Statistics of retrieved nursing notes

# of sequences (=# of patients) 8,808
# of notes 187,808
# of merged documents 97,769

Avg length of merged documents 1,548 chars (Stddev=904)

11 (Stddev=23)

Avg length of sequences

(b) Characteristics of ICU types

NICU CSRU MICU CCU FICU SICU
#ofpatients | 2332 2244 1918 1358 711 245
Avg. stay 10 4 5 4 5 3

(c) Percentages of patients who died within certain periods of
time after admission

Died within | /day 1week 1 month
% 0.03 0.08 0.14 0.19 0.22

6 months 1 year

of patients written in their first ICU stay. Nursing notes
are constrained to be longer than 100 characters excluding
spaces (shorter notes are discarded). Nursing notes from
the same time point (12 hour segment) are merged into a
single document. Table 2(a) shows the statistics of the gen-
erated sequences, and Table 2(b) shows the characteristics
of patients by different ICU types. The list of subject_id’s
is available on our website.

Nursing notes are preprocessed as follows. First, in order
to reduce the sparsity of de-identified information, the de-
identified pieces of text, e.g., patient names, are normalized
to their category name. For example, “[**Female First Name
(un) 978**]” is normalized to “PHI_ FEMALEFIRSTNAME”.
Second, to distinguish whether a situation is positive or nega-
tive, simple negation rules are applied. That is, a word and its
prefix “no”; “not”; or “without” are combined to one word with
the prefix “no_”. For example, “without spits” is changed to
“no_spits”. Third, words without any alphabet are removed.
Fourth, the 21 most frequent words are removed because they
are function words with little meaning and would othersise
take the top positions of learned topics. Lehman et al.’s work
[14] used only Unified Medical Language System codes. This
enhances the interpretability of the result, but loses valuable
information such as patients’ social aspects.

5.2 Classifiers

We use cost-sensitive SVMs to handle the imbalance be-
tween positive and negative instances (Table 2(c)). Weka®’s
CostSensitiveClassifier along with SMO configured to return
a probability distribution is used in this work. Because of the
time-sensitive nature of treatments in an ICU, missing pa-
tients in a critical condition may compromise their chances
of recovery. In cost-sensitive SVMs, false negatives can be
assigned a larger cost than false positives, so that the classi-
fiers are trained not to over-predict negative instances. An
alternative to cost-sensitive classifiers could be to resample

3http://www.cs.waikato.ac.nz/ml/weka/



negative instances in order to balance them with positive in-
stances. However, this technique suffers from huge variance
in effectiveness depending on the resampling result, and we
would also miss the opportunity to take advantage of all in-
stances. In contrast, cost-sensitive SVMs can make use of
the entire data while providing stable performance scores.

We use 10-fold cross-validation for evaluation. Each fold
consists of a training set (81%), a validation set (9%), and a
test set (10%). The cost of false positives is fixed to 1, and
the training phase explores the space of false negative costs
in two rounds to find the best cost using the validation set.
The first round explores from 10 to 150 with an interval of
10, finding the cost ¢ with the highest score. The second
round searches from ¢—9 to ¢+ 9 with an interval of 1. The
cost that performs the best across the two rounds is selected
for the final test. This method has several advantages over
searching the entire cost space with an interval of 1. Since
performance scores make a unimodal shape in terms of costs,
it finds the optimal point faster, and it can circumvent an
outlier peak, which may lead to overfitting.

Our evaluation makes use of the Mann-Whitney U test
score for comparison, also known as Area Under ROC Curve
(AUC). AUC measures how well a trained classifier discrimi-
nates positive instances and negative instances and is widely
used in this domain.

5.3 Features

Four types of textual features are explored in this work: n-
grams, standard topics (i.e., not time sensitive), state-aware
topics, and state transitions. These features are associated
with different levels of abstractions; n-grams are directly ob-
served, whereas topics and states are inferred.

n-grams: For each patient, unigrams and bigrams are ex-
tracted from nursing notes. We empirically decided to use
200 and 100 top n-grams for the mortality group and the
survival group, respectively, in terms of pointwise mutual
information (PMI). The PMI was calculated on the train-
ing data. The decision to use different sizes of n-grams for
the two groups comes from the fact that the mortality group,
which is much smaller than the survival group, requires more
n-grams for high recall. The selected n-grams are merged
into the final vocabulary. This process is performed for each
prediction term. For each patient, a vocabulary-sized fea-
ture vector is made such that each element is set to 1 if the
corresponding n-gram appears in the patient’s nursing notes
written until the prediction time.

Standard topics: Topic distributions learned by LDA
are used, using the classification method suggested by Ghas-
semi et al. [8]. For each patient, topic distributions are
extracted from individual nursing notes (not merged notes)
written until the prediction time. The extracted topic distri-
butions are averaged and aggregated into one feature vector,
whose dimension is equal to the number of topics.

State-aware topics: Document-wise topic distributions
(6%7;) learned by STTM are used. STTM estimates one state
per time point, thus generating one topic distribution for
each time point. The topic distributions of all documents
written until the prediction time are aggregated into one
feature vector as for standard topics.

State transitions: For each patient, a sequence of states
is estimated by STTM. The relative frequencies of states and
those of state transitions (pairs of states) are represented
as a feature vector. Therefore, if there are S states, the

dimension of the feature vector is S + S%. For making this
feature, only the latest four time points (i.e., two days) are
considered; otherwise, longer sequences tend to include more
states and have lower element values. The number four has
been chosen empirically.

To simulate the real world prediction task, where topics
and states should be estimated as nursing notes are obtained,
we estimate the LDA model only on the training set, and the
topic distributions of the validation and test data are inferred
from the learned topics, using Gibbs sampling. Similarly, we
run STTM only on the training set, and a Viterbi algorithm
is used to infer an unseen document’s state based on the state
transition distribution and topic distribution of each state.
Once states are finalized, the document’s topic distribution
is estimated using maximum likelihood estimation.

5.4 Model Parameters

For both LDA and STTM, symmetric Dirichlet priors are
used such that « is set to 0.1 and S to 0.001, which fosters
sparse distributions over topics and words. - is set to 1 so
that any probability distribution is equally probable for 7.
Gibbs sampling is run for 2000 iterations. The numbers of
topics and states are different for each task.

6. EXPERIMENTS

In this section, we first demonstrate the information ex-
tracted from the nursing notes by STTM (Task 1). Then,
we show improvement in mortality prediction when the ex-
tracted temporal information is used (Task 2). Lastly, we
evaluate individual features in order to interpret the result of
Task 2 and gain insights into the strengths and weaknesses
of the individual features (Task 3).

6.1 TASK 1: TEMPORAL INFORMATION
EXTRACTION BY STTM

This section is to illustrate and interpret state-aware top-
ics and state transitions learned by STTM over nursing notes
on one fold, which will be used for mortality prediction in the
tasks evaluated later in the paper. We also demonstrate the
kinds of insights STTM is capable of offering. The number of
topics and states are set to 10 for the sake of interpretability.
Note that interpretability is critical in the medical domain
[12], and too many topics and states may make the model
hard to interpret. Table 3 and Figure 4 show learned topics
and state transitions, respectively.

Table 3 shows the learned topics with manually assigned la-
bels, topical words, and example snippets from nursing notes.
Topical words are the words with the highest mutual infor-
mation with each of the learned topics. These state-aware
topics show some differences from standard topics learned by
LDA over the same data with the same parameter settings,
i.e., on merged nursing notes with 10 topics (not listed here
for space). First, there are cases where STTM dedicates two
topics that correspond to one standard topic as follows. The
admission topics for general patients (T3) and infants (T0)
capture the fact that general patients and infants usually fol-
low different state sequences (as seen in Figure 4). Newborn
jaundice (T4) and sepsis (T8) can also be explained by differ-
ent state paths on which they appear. Family visiting (T2)
and social activities (T5) share many overlapping words, but
family visiting is one of the most critical indicators of patient
mortality when it involves discussion of a patient’s death. On
the other hand, general social activities appear in nursing



Table 3: State-Aware Topics Learned From Nursing Notes

TO. Infant admission

T5. Social activities

infant, nicu, delivery, cbc, normal, sepsis, maternal, born,
admission, risk, baby, gbs, PHI _DATE, apgars, pregnancy

he, she, that, her, his, have, been, but, had, very, also, will,
PHI_LASTNAME, if, need, would, after, about, did, they, it

Admit/transfer note Infant admitted from 1&D for sepsis eval.
[**Name8 (MD) 63**] MD/NNP note for hx and physical.

NPN Pt left AMA, he felt that he needed to get home to help take
care of his daughters

T1. Stability

T6. Summary

feeds, cares, infant, well, voiding, continue, parents, feeding,
active, stable, support, cc, ra, far, crib, swaddled, mom, fen

am, social, place, blood, progress, due, care, up, time, pm, fluid,
npn, per, noted, cxr, id, area, cc, pain, urine, site, currently

continue to encourage po feeds. 4: G/D temps stable in an open
crib. alert and active with cares. sleeps well inbetween.

NURSING PROGRESS NOTE 11 PM - 7AM NO
COMPLAINTS HR 80'S...SBP 90-100'S..

T2. Family visiting

T7. Respiratory support

family, patient, but, today, pts, sats, team, placed, iv, mg, bp,
mask, off, afternoon, night, started, status, able, day, continues

thick, vent, secretions, peep, coarse, sputum, abg, suctioned,
yellow, goal, tube, trach, remains, gtt, eyes, amts, skin

npn Pt expired at 7:40pm. Family at bedside with pt. Emotional
support given to family at this very difficult time.

Resp Care: Pt continues trached and on ventilatory support with
simv 600x14/+5 peep/5 psv/fio2 .4 with acceptable abg

T3. Admission

T8. Sepsis

ccu, micu, PHI_DATE, cath, s/p, ¢/o, PHI_ HOSPITAL,
admitted, admission, sob, floor, arrival, hct, arrived, ns, wife

npo, settings, fio2, pn, infusing, secretions, cbg, rate, vent, amp,
coarse, respiratory, gas, lytes, received, ett, white, simv, cloudy

Pt transfered to [**Hospitall 22**] for ERCP which was done
on arrival to MICU.

Respiratory Care Note Pt.continues on SIMV 22/5 R 34 and
FI102 33-44%. BS are coarse. Pt. sx'd for mod.

T4. Newborn jaundice

T9. Laboratory tests

bili, infant, cpap, baby, isolette, caffeine, servo, nested,
phototherapy, enteral, mom, feeds, cc/kg/day, cc/k/d, will

pain, sbp, gtt, neuro, clear, cough, intact, oob, mg, pulses, foley,
neo, bs, effect, ct, bases, given, activity, mae, lopressor, po

#6-0: under single phototherapy, bili pending this am. sl
jaundiced. #4-O; temp stable in servo isolette, active and alert

7p-7a Neuro: atox3. Pain controlled with Percocet. CV: sbp
initially 140's, 2.5mg iv with effect. SR with long PR, rate 80's.

S2.
Lab tests

Resp support

S7.
Sepsis

Newborn
jaundice

support

Family
visiting

S6.
Stability

Newborn
jaundice

Newborn
jaundice

Sepsis

St.

Newborn
jaundice

Stability

Figure 4: State Transitions Learned From Nursing Notes

notes at anytime. These examples show that STTM splits
topics if they appear in different stages of patients. There
are opposite cases, too. Stability topic (T1) corresponds to
two similar standard topics. Drainage and sounds in organs
are topics that appear only in standard topics. These topics
may distinguish different symptoms better than state-aware
topics do. However, many of these symptoms appear simul-
taneously in one stage of a patient’s journey, and STTM
tends to combine them into one topic. For instance, there

may be many different outcomes of a patient’s stability, but
STTM counts all of them as one topic that appears when a
patient’s condition becomes stable, and dedicates other top-
ics to explain different stages.

Figure 4 is the state transition graph constructed by the
learned transition probabilities. Nodes are states and arrows
are transitions. Since a state is represented by a topic distri-
bution, node labels reflect the relative proportions of topics.
Yet, the labels should not be overemphasized as if each state



covers only those topics in the label. Node sizes reflect the
number of patients that are assigned to those states at least
once. The thickness of an arrow reflects the transition prob-
ability. The arrows coming into S9, S2, and S5 without a
source state indicate the probabilities of these states being
initial states. Transitions with too small probabilities are
not shown in the graph for clarity.

The most notable characteristic is the two big components
bridged by S7. The states in the left component are more de-
scriptive of general patients, whereas the states in the right
have a large proportion of infant issues. Stability prevails
in the right component, which is consistent with the data,
wherein neonates are likely to end up being stable in ICUs.
The states S9, S2, and S5 are found to be initial states in
most sequences. This is reflected by their constituting top-
ics as well, that is, large proportions of general admission
(T3) and infant admission (T0). State 2 represents various
laboratory tests, which are also common in patients’ initial
stages. It is interesting that only the infant admission state
(S5) is in the right component, indicating the different pat-
terns of NICU patients from other patients. Data analysis
confirms that State 5 and thus its connected states capture
neonatal patients well; 1725 out of 1727 patients who start
from State 5 are neonatal patients, and this accounts for
92% of the entire neonatal patients in the training set.

In summary, STTM captures topics with unique charac-
teristics by taking into account time and state transition.
Also, it may not be as straightforward to use other time-
aware topic models described in Section 2 to draw a diagram
like Figure 4 that provides the whole picture of patient states
and state transitions.

6.2 TASK 2: MORTALITY PREDICTION
WITH TEMPORAL INFORMATION

This section examines mortality prediction performance
meant to validate the insights offered in Task 1. We exam-
ine whether temporal information conveyed by state-aware
topics and state transitions add any predictive power over
standard topics in mortality prediction. The following four
combinations of features are compared.

GT: Baseline 50 standard topics. This corresponds to the
state-of-the-art method used by Ghassemi et al. [§].

GT+ST: 50 standard topics plus state transitions trained
with 10 topics and 10 states.

GT+SA: 50 standard topics plus state transitions and
state-aware topics trained with 10 topics and 10 states.

GT+SA+: This feature is the same as GT+SA except
that for time points 11-20, it uses state transitions trained
on longer sequences. Since most sequences are very short
(the median is 2.03 days), STTM is hindered from obtain-
ing good prediction performance for patients with long ICU
stays. We therefore train STTM on a subset of training
data that includes only those sequences longer than five time
points. For prediction at time points 1-10, the original state
transitions are used, and at time points 11-20, the newly
trained state transitions are used. Therefore, GT+SA and
GT+SA+ make the same performance until time point 10.

Table 4 shows the AUC scores averaged across time points.
Best scores are in bold, and scores higher than the base-
line (GT) are marked with an asterisk if it is statistically
significant. Paired t-tests were used for significance tests,
and p-values < 0.05 are considered significant as in com-
mon mortality prediction tasks [16]. For short-term predic-

Table 4: Performance of Mortality Prediction with
Combined Features

GT GT+ST GT+SA4 GT+SA+
1-Day 0.7325 0.7218 0.7224 0.7235
1-Week 0.7781 0.7772 0.7811 0.7784
1-Month 0.7820 *0.7860 *0.7866 *0.7871
6-Month 0.7882 0.7884 *0.7921 *0.7912
1-Year 0.7905 0.7912 0.7930 *0.7939
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Figure 5: Performance of Mortality Prediction by
Prediction Terms and Time Points



tions (1-day and 1-week), incorporating temporal informa-
tion does not significantly enhance performance. However,
for long-term predictions (1-month, 6-months, and 1-year),
the temporal information achieves a statistically significant
improvement. Training STTM on long sequences turns out
to be effective for performance improvement. Figure 5 shows
the performance by terms and time points.

Short Term (1-day & 1-week): For 1-day prediction,
incorporating temporal information very slightly harms per-
formance, although the effect is not statistically significant.
We found no difference in the diversity of states or the fre-
quency of state change between patients who died within one
day and those surviving longer. Hence, this result is rooted
in the difficulty of predicting patient outcome in the very
near future. For instance, it is very hard to tell whether
a patient would die today or tomorrow. For 1-week pre-
diction, temporal information starts to help achieve higher
performance, although it is not statistically significant yet.
There exists a big gap in average scores between 1-day and
1-week. This reflects the difficulty of predicting very short-
term consequences. Intuitively, for a patient who is fighting
against death right now, clinical measures could be more
helpful. This supports the result of previous research that
included laboratory and radiology reports [8], which shows
higher prediction accuracies for shorter terms.

Long Term (1-month, 6-month & 1-year): For long-
term predictions, GT+SA and GT+SA+ outperform the
baseline with statistical significance. Training on long se-
quences is helpful to achieve higher accuracies for 1-month
and 1-year predictions. As expected, it enhances prediction
performance for later time points, because long sequences
help STTM to be trained well for patients who stay in
ICUs for a long time. Interestingly, all the combined mod-
els (GT+ST, GT4+SA, GT+SA+) outperform the baseline
for 1-month prediction, but their statistical significance de-
creases for longer terms. This indicates that temporal infor-
mation during an ICU stay loses its prediction power as the
target future becomes further. This task proves the effec-
tiveness of the temporal information extracted from nursing
notes in mortality prediction tasks.

6.3 TASK 3: MORTALITY PREDICTION BY

INDIVIDUAL FEATURES

This section measures mortality prediction performance
based on each of the four types of textual features: n-grams,
standard topics, state-aware topics, and state transitions.
The purpose of this task is to take a closer look at what
information each feature type captures in mortality predic-
tion. These word-level, topic-level, and state-level features
can be seen as being associated with different levels of ab-
straction. To the best of our knowledge, there is no article

that provides a comprehensive view of different types of tex-
tual features in mortality prediction tasks. The number of
states is fixed to 10 in our experiments.

Table 5 shows the mortality prediction performance of the
four individual feature types. Best scores are in bold, and
an asterisk is marked if a score is higher than the baseline
(StandTopic) or a baseline score is higher than any other
scores with statistical significance. N-grams perform poorly
compared to topics and state transitions. For 10 topics,
state-aware topics perform better than standard topics in
most cases, and even state transitions alone are competi-
tive with standard topics. This shows that the learned tem-
poral information is correlated with patient mortality. For
50 topics, the performance of standard topics improves a
lot because increasing the number of topics enables to cap-
ture more various topics related to mortality. On the other
hand, the performance of state-aware topics and state tran-
sitions remains almost the same. This is probably because
the number of possible topic distributions is restricted to the
number of states, preventing documents from having a va-
riety of topic distributions. Although state-related features
do not beat standard topics on their own, recall that they
enhance performance when used together as shown in Task
2. The performance of state-related features may improve
if the number of states is increased at the expense of in-
terpretability. Replacing state parameters 0’s with Dirichlet
priors a’s may also give more freedom to topic distributions.

The rest of this section discusses the performance of in-
dividual features. The high markers of mortality and error
cases are examined to identify their limitations and possi-
ble directions for improvement. For illustration, we pick the
classifier at time point 4 (e.g., two days after admission),
which is near median of all ICU stays (=2.03 days).

n-grams: To see indicative n-grams, enrichment [8] has
2p dnw*1(n)
=

n dnw

been calculated for each n-gram w as , where n is

a patient index, gn. is the feature value, and 1(n) is equal to
1 if patient n died. The enrichment of an n-gram represents
the relative frequency of positive instances who have that
n-gram, so higher enrichment indicates higher likelihood of
mortality. Table 6(a) shows n-grams with the highest and
lowest enrichment on average across different terms. Only
those n-grams that occur in at least 1% of the entire nurs-
ing notes are shown to filter out overfitted n-grams. High
mortality markers include descriptions about patient con-
ditions (e.g., “neuro unresponsive” and “mottled”), nurses’
actions (e.g., “cmo (comfort measures only)” and “dnr (do
not resuscitate)”), medications (e.g., “levophed” and “vaso-
pressin”), and family responses (e.g., “priest” and “meeting
held”). High survival markers include a lot of patient condi-

tions such as “no_spits”, “active alert”, and “ad lib”.

Table 5: Performance of Mortality Prediction with Individual Features

10 Topics 50 Topics
n-grams | StandTopic  StateTopic  StateTrans StateAll StandTopic  StateTopic  StateTrans StateAll
1-Day 0.563 0.709 0.711 0.709 0.708 *(0.733 0.705 0.703 0.691
1-Week 0.651 0.746 0.749 0.746 0.747 *0.778 0.749 0.737 0.751
1-Month 0.691 0.753 0.759 0.758 *0.762 *(.782 0.758 0.749 0.763
6-Month 0.726 0.766 0.767 0.766 *0.771 *(.788 0.769 0.757 0.769
1-Year 0.732 0.772 0.771 0.769 0.773 *0.790 0.776 0.760 0.775




Table 6: n-gram Features
(a) High markers of mortality

€mo, Neuro unresponsive, poor prognosis, prognosis, priest,
fixed, dnr, comfort measures, wishes, dnr/dni, brain, levophed

(b) n-grams with high error contribution

afib, afebrile, nl, will continue, labs, tlc, distended bs,
cardiac, abd, code status, right, rate, meds, distended, only,

Table 7: Standard Topic Features
(a) High markers of mortality

T16. Unrespon- | neuro, pupils, mm, eyes, left, right, head,
siveness drain, sbp, icp

T10. Heart fail- | gtt, dr, PHI LASTNAME, fluid, levophed,
ure medicine bolus, levo, aware, map, started

T29. Pain
reliever

propofol, sedated, sedation, fentanyl, versed,
peep, gtt, cc/hr, vent, secretions

(b) Topics with high error contribution

T41. Infant
delivery

T28. Respira-
tory infection

T17. TSICU

nicu, delivery, infant, cbc, maternal, sepsis,
born, admission, gbs, risk

settings, fio2, vent, gas, rate, secretion, cbg,
map, npo, ett, lytes

per, t/sicu, skin, id, tsicu, systems, review,
endo, prophylaxis, fx

To examine the reason for the poor performance of n-
grams, each n-gram’s error contribution has been calculated
as fu (NS — NI, where f,, is the feature weight of n-gram
w learned by SVM, and NY and NY are the fractions of
positive instances and negative instances who have this n-
gram, respectively. Since features that contribute to mortal-
ity (survival) have negative (positive) feature weights, the
lower the error contribution the better. Table 6(b) shows
the n-grams with the highest error contribution. The list
includes apparently neutral terms such as “will continue”,
“labs”, “right”, and “rate”, whose polarity depends on the
context. Most of these terms are also very frequent, which
significantly harms the prediction performance of n-grams.

Standard Topics (50 topics): We calculated the en-
richment of each topic across different terms (Table 7). In
this case, the feature values are real numbers between 0
and 1. Unresponsiveness (T16) and taking heart failure
medicines (T10) and pain relievers (T29) turn out to be sig-

nificant signs across all prediction terms. These topics and
the n-gram high markers capture similar themes. However,
the reduced dimension and the lower sparsity of standard
topics significantly improves performance.

The error contribution of the topics shows that infant deliv-
ery (T41), respiratory infection (T28), and TSICU (trauma
surgical ICU) (T17) contribute to classification error the most.
This is reasonable because these topics are not fine-grained
enough to the extent that their existence directly leads to mor-
tality. Thisis thelimitation of unsupervised topic models, and
splitting these topics may improve performance significantly.

State-Aware Topics (10 topics): Figure 6(a) shows
the enrichment of each state-aware topic. Respiratory sup-
port (T7), family visiting (T2), summary (T6), and admis-
sion (T3) are always in top for all terms. Laboratory tests
(T9) are slightly lower. Stability (T1), newborn jaundice
(T4), infant admission (T0), and sepsis (T8) have very low
enrichment. These topics are reliably indicative of survival.

State Transitions (10 topics): Figure 6(b) shows the
enrichment of each state. Interestingly, states have higher
variance in enrichment than state-aware topics, indicating
that states do reflect different mortality possibilities. The
state about respiratory support and family visiting (SO) has
the highest enrichment, followed by the state about respira-
tory support without family visiting (S3).

Figure 6(c) shows the average enrichment of state transi-
tions over all terms. Rows are source states and columns are
target states. The first five are the states in the left compo-
nent in Figure 4, and the last five are in the right component.
Red and green indicate high and low enrichment, respec-
tively, and black represents no transition found. Patients
who move from respiratory problems (S3) to sepsis (S7) and
who are admitted (S9) and moved to respiratory support
(S0) show the highest enrichment. In contrast, patients who
move from respiratory problems (S3) to general lab tests
(S2) show relatively low enrichment. State transitions cen-
tered around S7 (sepsis) show moderate enrichment. This
is consistent with the recent report that mortality rates can
be significantly reduced when sepsis is well controlled [1].

Note that high markers differ across time points. For ex-
ample, high marker topics after five days from admission
comprise a lot of neonate-related topics, because most adult
patients have been discharged by this time (see Table 2(c)).

7. CONCLUSION

This paper proposes and evaluates a novel approach to
mortality prediction using latent temporal information in
nursing notes. Our joint model of an HMM and LDA reveals
the temporal dynamics of patients’ underlying states latent
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Figure 6: State-Related Features



within nursing notes. The information—state-aware topics
and state transitions—is then leveraged to improve mortal-
ity prediction performance. Task 1 shows that the model
finds a meaningful trend of patients’ state transitions and
topics from nursing notes. Task 2 shows that the learned
temporal information is beneficial for long term mortality
prediction, but not much in short-term prediction. Task 3
suggests that the learned states indeed have different levels
of enrichment indicating that the states are related with mor-
tality and survival. In addition, four types of text features
are examined both quantitatively and qualitatively, provid-
ing a comprehensive view of the roles and limitations of the
textual features in mortality prediction tasks.

There are limitations as well. The current version of STTM
shows no improvement in mortality prediction when the num-
ber of topics is increased from 10 to 50. This may be partly
because the number of possible topic distributions is restricted
to the number of states. However, we need to try STTM on
other data and evaluate in different aspects as well in order to
better understand the scalability of STTM. Another limita-
tion is that our approach has no improvement when applied
to NICUs and the others separately. This might be due to
the reduced data size and the sparsity of the feature space
(e.g., 100 possible state transitions). For example, the num-
ber of NICU patients is only a fourth of the entire patient
population, and the other ICU patients have very short stays
(Table 2(c)). More sophisticated approaches are desirable to
use temporal information for different ICU types.

8. ACKNOWLEDGMENTS

This research was supported by the Naval Research Lab-
oratory under grant number N00173-09-F-0237.

9. REFERENCES

[1] J. R. Beardsley, C. M. Jones, J. Chou, M. Currie-Coyoy,
T. Jackson, and A. Orsborn. Code Sepsis: Improving
Sepsis Care; Saving Patients’ Lives. ASHP Best
Practices Award, 2014.

[2] D. M. Blei and J. D. Lafferty. Dynamic topic models. In
ICML 06, pages 113—-120, 2006.

[3] D. M. Blei and P. J. Moreno. Topic segmentation with
an aspect hidden Markov model. In ACM SIGIR 01,
pages 343-348, 2001.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. JMLR, 3:993-1022, 2003.

[5] C.-c. Chia, Z. Syed, and A. Arbor. Scalable Noise
Mining in Long-Term Electrocardiographic Time-Series
to Predict Death Following Heart Attacks. KDD ’1/,
pages 125-134, 2014.

[6] M. Cvach. Monitor alarm fatigue: an integrative
review. Biomedical instrumentation € technology,
46(4):268-77, 2012.

[7] Z.J. Gao, Y. Song, S. Liu, H. Wang, H. Wei, Y. Chen,
and W. Cui. Tracking and Connecting Topics via
Incremental Hierarchical Dirichlet Processes. In IEEE
ICDM 11, pages 1056-1061, 2011.

[8] M. Ghassemi, T. Naumann, F. Doshi-Velez,

N. Brimmer, R. Joshi, A. Rumshisky, and P. Szolovits.
Unfolding Physiological State : Mortality Modelling in
Intensive Care Units. KDD ’14, pages 75—84, 2014.

[9] A. Gruber, M. Rosen-Zvi, and Y. Weiss. Hidden topic

Markov models. AISTATS ’07, pages 163-170, 2007.

[10] L. Hong, B. Dom, S. Gurumurthy, and
K. Tsioutsiouliklis. A time-dependent topic model for
multiple text streams. In KDD ’11, page 832, 2011.

[11] L. Hong, D. Yin, J. Guo, and B. D. Davison. Tracking
trends: incorporating term volume into temporal topic
models. In KDD 11, page 484, 2011.

[12] A. Kalogeratos, V. Chasanis, G. Rakocevic, A. Likas,
Z. Babovic, and M. Novakovic. Mining Clinical Data. In
G. Rakocevic, T. Djukic, N. Filipovic, and
V. Milutinovié, editors, Computational Medicine in
Data Mining and Modeling SE - 1, pages 1-34. 2013.

[13] L.-W. Lehman, R. Adams, L. Mayaud, G. Moody,

A. Malhotra, R. Mark, and S. Nemati. A physiological
time series dynamics-based approach to patient
monitoring and outcome prediction. IEEE journal of
biomedical and health informatics, PP(99):1, 2014.

[14] L.-w.Lehman, M. Saeed, W. Long, J. Lee, and R. Mark.
Risk stratification of ICU patients using topic models
inferred from unstructured progress notes. AMIA
Annual Symposium proceedings, 2012:505—11, 2012.

[15] Q. Mei and C. Zhai. Discovering evolutionary theme
patterns from text. In KDD ’05, page 198, 2005.

[16] R. Menéndez, R. Martinez, S. Reyes, J. Mensa,

X. Filella, M. A. Marcos, A. Martinez, C. Esquinas,

P. Ramirez, and A. Torres. Biomarkers improve
mortality prediction by prognostic scales in community
-acquired pneumonia. Thoraz, 64(7):587-91, 2009.

[17] M. J. Paul. Mixed Membership Markov Models for
Unsupervised Conversation Modeling. In
EMNLP-CoNLL ’12, pages 94-104, 2012.

[18] Z. Syed, B. M. Scirica, S. Mohanavelu, P. Sung, E. L.
Michelson, C. P. Cannon, P. H. Stone, C. M. Stultz, and
J. V. Guttag. Relation of death within 90 days of
non-ST-elevation acute coronary syndromes to
variability in electrocardiographic morphology. The
American journal of cardiology, 103(3):307-11, 2009.

[19] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei.
Hierarchical Dirichlet Processes. Journal of the
American Statistical Association, 101(476):1566-1581,
2006.

[20] H. Wang, D. Zhang, and C. Zhai. Structural Topic
Model for Latent Topical Structure Analysis. ACL 11,
pages 1526-1535, 2011.

[21] X. Wang and A. McCallum. Topics over time: a
non-Markov continuous-time model of topical trends. In
KDD °06, page 424, 2006.

[22] Y. Wang, E. Agichtein, and M. Benzi. Tm-lda: Efficient
online modeling of latent topic transitions in social
media. In KDD ’12, pages 123-131, 2012.

[23] J. Wiens, E. Horvitz, and J. V. Guttag. Patient Risk
Stratification for Hospital-Associated C. diff as a
Time-Series Classification Task. In Advances in Neural
Information Processing Systems, pages 467-475, 2012.

[24] J. Yang, J. McAuley, J. Leskovec, P. LePendu, and
N. Shah. Finding progression stages in time-evolving
event sequences. In WWW 14, pages 783-794, 2014.

[25] J. Zhang, Y. Song, C. Zhang, and S. Liu. Evolutionary
hierarchical dirichlet processes for multiple correlated
time-varying corpora. In KDD ’10, page 1079, 2010.

[26] J. Zhu and E. P. Xing. Conditional topic random fields.
ICML ’10, pages 1239-1246, 2010.



