
Knowledge Tracing in Programming Education
Integrating Students’ Questions

Doyoun Kim1, Suin Kim2, Yohan Jo1

1Seoul National University, 2Elice
{xxxdokki, yohan.jo}@snu.ac.kr, suin.kim@elicer.com

Abstract

Knowledge tracing (KT) in programming edu-
cation presents unique challenges due to the
complexity of coding tasks and the diverse
methods students use to solve problems. Al-
though students’ questions often contain valu-
able signals about their understanding and mis-
conceptions, traditional KT models often ne-
glect to incorporate these questions as inputs
to address these challenges. This paper intro-
duces SQKT (Students’ Question-based Knowl-
edge Tracing), a knowledge tracing model that
leverages students’ questions and automatically
extracted skill information to enhance the ac-
curacy of predicting students’ performance on
subsequent problems in programming educa-
tion. Our method creates semantically rich em-
beddings that capture not only the surface-level
content of the questions but also the student’s
mastery level and conceptual understanding.
Experimental results demonstrate SQKT’s su-
perior performance in predicting student com-
pletion across various Python programming
courses of differing difficulty levels. In in-
domain experiments, SQKT achieved a 33.1%
absolute improvement in AUC compared to
baseline models. The model also exhibited ro-
bust generalization capabilities in cross-domain
settings, effectively addressing data scarcity is-
sues in advanced programming courses. SQKT
can be used to tailor educational content to in-
dividual learning needs and design adaptive
learning systems in computer science educa-
tion.1

1 Introduction

Recent advancements in educational technologies
have enabled the collection of dynamic data as
students interact with learning systems. Conse-
quently, researchers have paid considerable atten-
tion to knowledge tracing (KT), which involves

1This paper is under review. We will release our source
code upon the publication of the paper.

Figure 1: SQKT’s process using an example from our
dataset. A: All problem descriptions and code submis-
sions from the student’s history. B: The questions the
student asked between submissions and the related skills
extracted from these questions. C: The description of
the next problem and the required skills inferred from
the reference solution. The model uses the informa-
tion from A and B and predicts the student’s success or
failure on the next problem.

monitoring students’ knowledge states and predict-
ing their future performance (Corbett and Ander-
son, 1994). A valuable source of signals about
students’ understanding and misconceptions is the
questions they ask (Sun et al., 2021). With the
growing popularity of online learning platforms
and learning management systems (e.g., Moodle
and Canvas) that include Q&A forums, student
questions and interactions with educators have be-
come increasingly accessible. However, traditional
KT models overlook this rich source of informa-
tion. This gap is particularly significant in program-
ming education, where KT is challenging because
students’ competencies need be assessed from un-
structured and noisy source code. In such contexts,
students’ questions offer clearer insights into their
understanding and confusion (King, 1994).

In this paper, we present the first model that
integrates rich signals from student questions to
accurately predict students’ performance on subse-
quent problems, as illustrated in Figure 1. As we
will show, merely using a transformer to encode

1

students’ questions is suboptimal, because it might
not fully represent the patterns of confusion and ed-
ucational context that could be captured through the
interaction between student and educator. Hence,
our model enriches embeddings with two auxiliary
signals: educator responses and skill information
auto-extracted by GPT from students’ questions.
This approach creates a more comprehensive and
detailed representation of the student’s understand-
ing, leading to improved prediction accuracy.

Experimental results show significant improve-
ments over existing methods, with up to a 33.1%
absolute improvement in AUC compared to base-
line models in in-domain experiments. Our model’s
ability to generalize across diverse educational con-
tent, including unseen courses with limited data,
highlights its robustness. Our analysis reveals that
this performance boost stems from the questions
and the automatically extracted skill information,
which offer insights into conceptual understanding
and reasoning processes that are difficult to capture
from code submissions alone. The combination
of student questions with dynamically extracted
skill information enables more accurate and gran-
ular modeling of student knowledge states. Our
approach is expected to contribute to more per-
sonalized and effective learning interventions in
programming education.

The main contributions of this paper are:
• To the best of our knowledge, this is the first

work to integrate students’ questions into KT,
enabling more accurate predictions of students’
success or failure on subsequent problems.

• Our method for combining auto-extracted
Python skills with student questions significantly
improves model performance compared to rely-
ing solely on natural language questions.

• Our model’s strong performance in cross-domain
settings highlights its generalizability across dif-
ferent course materials and environments.

2 Related Works

Knowledge Tracing with Behavioral Data
Knowledge tracing (KT) models students’ knowl-
edge over time to predict their future performance
(Piech et al., 2015). Building upon the founda-
tional approaches like Bayesian Knowledge Trac-
ing (BKT) (Corbett and Anderson, 1994) and Deep
Knowledge Tracing (DKT) (Piech et al., 2015),
recent research has advanced KT by incorporat-
ing behavioral data, such as response times (Song

et al., 2021), scaffolding interactions (Asselman
et al., 2020), and attempt counts (Sun et al., 2022).

However, a significant gap remains in leveraging
student-educator interactions. Questions arising
from these interactions often reveal students’ rea-
soning processes and areas of struggle in applying
theoretical knowledge to coding (Sun et al., 2021).
Yet, most existing models fail to capture the valu-
able insights embedded in students’ questions. Our
model addresses this challenge by directly integrat-
ing this rich data.

Knowledge Tracing in Programming Education
Programming education poses unique challenges
for KT due to the complexity of coding tasks and
multiple correct solutions that can be derived using
various skills. Traditional KT models often use the
Q-matrix method to manually tag problems with
the required skills (Yu et al., 2022), but this pro-
cess is labor-intensive and often fails to capture the
full range of skills students use. The diversity in
problem-solving approaches complicates the trac-
ing of specific skills mastered by a student, making
it challenging to predict future performance accu-
rately.

A key aspect of KT in programming education
is the representation and modeling of knowledge
components (KCs), such as “for loop”, “recursion”,
or “object-oriented principles”. Recent work has
focused on analyzing code submissions to model
these KCs and predict learning states. Shi et al.
(2022) introduced Code-DKT, which uses attention
mechanisms to extract domain-specific code fea-
tures. Liu et al. (2022) developed an approach that
considers the multi-skill nature of programming
exercises by learning features from student code
that reflect multiple skills.

However, these approaches still rely on manual
tagging of KCs. Our approach advances this by
using an automated skill-mapping system using
GPT to extract KCs from student questions. This
method allows more flexible use of KCs, enabling
the model to identify and leverage skills without
extensive manual tagging. This skill extraction
method captures aspects of student knowledge that
are not evident in code submissions alone, improv-
ing the prediction of student performance.

3 Methods

In this section, we introduce our Students’
Question-based Knowledge Tracing (SQKT)
model. Our primary goal is to predict a student’s

2

Figure 2: Comprehensive architecture of the SQKT. The model processes problem text, code submissions, and
student questions through three embedding layers. Skill extraction is performed using a GPT-based skill-mapping
system. All embeddings and extracted skills are combined through a fusion layer, which is then processed by
transformer encoder layers to generate the final prediction output. The model is trained using multiple objective
functions, including Ltriplet for aligning the diverse embeddings and Lpred for predicting students’ performances
on tasks. Additionally, the auxiliary objective function Lquestion is included to enhance the model’s robustness and
generalization capabilities.

success on a problem by integrating information
about the student’s history of solving other prob-
lems. Our model takes a sequence of descriptions
of problems the student has attempted in the past,
associated code submissions, student questions,
and skill information (each problem may have mul-
tiple submissions and questions), along with the
description and required skills for the next prob-
lem. The model then predicts whether the student
will correctly solve the next problem. The overall
architecture is illustrated in Figure 2.

3.1 Multi-feature Inputs

SQKT integrates various input features, with a fo-
cus on students’ questions and extracted skills. In
this section, we first detail our main contribution:
the integration of students’ questions as input fea-
tures, followed by an overview of the remaining
input components.

Student Questions (Figure 2, A) Integrating stu-
dent questions is motivated by valuable insights
they provide into a student’s mastery level, reveal-
ing areas of confusion and the depth of understand-
ing of specific concepts (Sun et al., 2021). As illus-
trated by an example student-educator interaction
in Figure 3, students’ questions typically include
two types of information: natural language ques-

Figure 3: This figure illustrates different types of student
questions and interactions. (A) Natural language-based
questions (B) Educator responses (C) Code-based ques-
tions

tions that seek clarification on specific concepts or
strategies (A), and code-based questions that ad-
dress specific lines of code or errors (C). Educator
responses further clarify misconceptions, provide
additional context, and highlight key concepts (B).

To effectively leverage this information, we em-
ploy the CodeT5 model (Wang et al., 2021) for
embedding student questions. CodeT5 was chosen
for its ability to understand both natural language

3

and code syntax, making it ideal for processing the
mixed content of students’ questions. If no student
questions exist when SQKT expects a question em-
bedding, a zero vector is used instead.

We further enhance this embedding process by
fine-tuning CodeT5 with an auxiliary task of gen-
erating potential educator responses (Figure 2, E).
This task helps the question embedding capture the
gist of a student’s question (mainly confusion and
erroneous code) that is predictive of the educator’s
response. The following auxiliary loss function is
integrated into our overall training objective:

Lquestion = −Σ(x,y) logP (y|x) (1)

where (x, y) is a pair of student question and educa-
tor response. This enhances question embeddings
and the model’s overall prediction accuracy.

Skill Extraction (Figure 2, B) Identifying the
skills students struggle with can improve our
model’s performance compared to relying solely
on questions. Extracting skills from student ques-
tions is more straightforward and accurate than
from submitted codes, as these questions often di-
rectly address the concepts students find challeng-
ing. By combining these extracted skills with those
required for the target problem, the model can pre-
dict a student’s performance more accurately. To
achieve this, we developed a method to extract and
leverage skill information from both student ques-
tions and target problems.

The first challenge was to define an effective set
of Python skills. We identified a comprehensive
set of 36 core Python concepts and 19 Python error
types, drawing from Python’s official documenta-
tion and books by Sweigart (2019) and Downey
and Mayfield (2019), as shown in Table 5. Incor-
porating error types as skills was motivated by the
pedagogical principle that errors reveal students’
understanding and misconceptions, which are cor-
related with learning gaps (Altadmri and Brown,
2015; Becker et al., 2019; Hertz and Ford, 2013).

The next challenge was scaling skill extraction.
Traditional approaches rely on experts to manually
tag skills for each problem, which is labor-intensive
and lacks scalability. To address this, we developed
an automatic method using GPT-4o. Specifically,
we provided GPT-4o with about 20 examples of
student questions and a pre-defined list of skills.
GPT-4o was then prompted to reference these ex-
amples and generate a Python script that could be
used to map any student question to the relevant

skills from our predefined skill list. The resulting
skill extraction script, referred to as the skill ex-
tractor, uses specific rules to identify skills from
both natural text and code. We found that a rule-
based method is preferable to using GPT on the
fly, due to high precision and consistency in skill
identification. We reviewed the script and corrected
inaccurate or unreliable rules based on some stu-
dent questions manually labeled with skills.

To validate the skill extractor more systemat-
ically, we evaluated it on a random sample of
100 student questions from the “Python Basic”
course (§4.1). These questions were annotated with
ground-truth skills by a co-author of this study, and
these annotations were further validated by a grad-
uate student proficient in Python but not involved
in this study, resulting in Cohen’s kappa of 0.98.
The skill extractor achieved a precision of 0.85,
a recall of 0.88, and an F1-score of 0.86. These
results indicate that the skill extractor produces re-
liable outputs that closely match human judgments.
We considered this level of accuracy acceptable,
as extracted skills substantially improve SQKT’s
predictive performance (as discussed in the experi-
ment section).

We first use the skill extractor to extract skill
information from student questions. Specifically,
it processes student questions to identify the par-
ticular skills students are struggling with. These
identified skills are concatenated as a single text
and encoded into a skill embedding using the pre-
trained BERT-base model (Devlin et al., 2018). In
addition, the skills required to solve each problem
are identified by applying the skill extractor to the
reference solution code provided with each prob-
lem in our dataset. Taken together, this approach
enables SQKT to align the extracted skills with spe-
cific skills required for the target problem, thereby
enhancing its predictive accuracy.

Code Embedding (Figure 2, C) We use Code-
BERT (Feng et al., 2020), a pre-trained transformer
model designed for programming languages, to
convert students’ code submissions into vector rep-
resentations. This captures both the syntactic and
semantic properties of the code, providing insights
into the student’s coding abilities and problem-
solving strategies.

Problem Embedding (Figure 2, D) Problem
descriptions include the problem statement, in-
put/output specifications, and constraints. They
are processed through the pre-trained BERT-base

4

model (Devlin et al., 2018) to generate an embed-
ding that captures the contextual meanings of the
problem statements. This information is crucial for
understanding the task requirements and difficulty
levels.

Fusion Layer (Figure 2, H) The fusion layer
combines the above embeddings—questions, skills,
problem descriptions, and code submissions—into
a unified representation space. While each source
provides unique insights, challenges remain in in-
tegrating these heterogeneous signals. The fusion
layer addresses this by projecting each embedding
type into a common 512-dimensional space based
on the relationships among the embeddings.

Specifically, we employ triplet loss (Figure 2,
G) to encourage embeddings from the same sub-
mission to be positioned closely together, while
those from different submissions or representing
distinct programming concepts are placed farther
apart. The triplet loss is defined as:

Ltriplet = max(0, d(a, p)− d(a, n) +margin),
(2)

where:
• a is the current problem’s embedding derived

from the student’s code submission, serving as
the anchor embedding.

• p is the embedding of the current problem’s de-
scription or student questions, serving as positive
samples.

• n is the embedding of a randomly selected prob-
lem’s description or student questions, serving
as negative samples.

• d(x, y) is the Euclidean distance between two
embeddings x and y.

• margin is a hyperparameter enforcing a mini-
mum distance between positives and negatives.

Consequently, the fusion layer enhances SQKT’s
ability to process heterogeneous yet semantically
and contextually related signals more coherently.

3.2 Multi-Head Self-Attention Layers
All embeddings from the student’s history and the
next problem are encoded through a multi-head at-
tention mechanism to predict the student’s success
or failure on the next problem (Figure 2, F). The
target problem for prediction is represented by the
following tensor:

T = [PET , SET] ∈ R2×512

where PET and SET are the problem and skill
embeddings for the target problem.

For each problem i that the student attempted
prior to the target problem, we construct a tensor
Ui containing the input features associated with the
ith problem:

Ui = [PEi, CEi, QEi, SEi] ∈ RK×512

where PEi, CEi, QEi, and SEi denote the prob-
lem, code, student question, and skill embeddings,
respectively. Each CEi, QEi, and SEi is a tensor
with potentially multiple rows, consisting of em-
beddings accumulated from all code submissions
and questions related to the ith problem. If the stu-
dent asked no questions, QEi is set to a zero vector.
K increase as the student makes more submissions
for the ith problem.

Taken together, the input to the multi-head
self-attention layers consists of the target prob-
lem along with all preceding learning history
[U1, U2, . . . , Un, T].

This input sequence passes through six self-
attention layers, each capturing complex interac-
tions among different submissions and their compo-
nents. After the final attention layer, max-pooling
is applied to all output embeddings to derive a rep-
resentation of the student’s knowledge state. The
resulting embedding is then fed to a classification
head to predict the student’s success or failure on
the target problem. Binary cross-entropy is used as
the loss function:

Lpred = −Σ(y log(ŷ) + (1− y) log(1− ŷ)),

where y is the true label and ŷ is the predicted label.
The final loss function is a weighted sum of the

prediction loss, question loss (Eq. 1) and triplet
loss (Eq. 2):

Ltotal = Lpred + Lquestion + λLtriplet

where λ is a hyperparameter that adjusts the weight
of the triplet loss.

4 Experiment Settings

To evaluate the performance and generalizability of
our SQKT model, we conduct experiments aimed
at answering the following research questions:
1. How does SQKT compare to existing knowl-

edge tracing models in predicting student per-
formance on programming problems?

5

Attribute PB FP Algo. PI

Unique
problems 48 60 32 227

Submissions
per problem 474 20,573 297 1,533

Students 160 8,141 77 1,092
Training 17,685 1,050,360 5,689 308,825
Validation 2,161 123,975 2,233 20,991
Test 2,926 60,071 1,587 18,251

Table 1: Statistics of the dataset. PB: Python Basic, FP:
First Python, Algo: Algorithm, PI: Python Introduction.

2. To what extent does the integration of question
data and skill information enhance the model’s
predictive accuracy?

3. How well does SQKT generalize across differ-
ent courses with different difficulty levels?

4.1 Dataset

Our study uses data collected from a Korean online
programming education platform between January
2022 and April 2024, with the consent of the copy-
right holders. These data cover four distinct Python
programming courses, providing a diverse range of
difficulty levels and topics. All data are in Korean
and include Python code, covering code blocks and
associated error messages. Statistics are summa-
rized in Table 1 and description and examples are
in Appendix B and D. Additionally, the data con-
tain student-educator interactions including student
questions and educator answers (Figure 3). The
data for each course are split by students into train-
ing, validation, and test sets in an 8:1:1 ratio, with
each student assigned to only one set to prevent the
risk of information leakage.

4.2 Experimental Setup

We conduct a series of experiments to assess two
critical aspects: the model’s ability to predict stu-
dent performance and generalize across different
courses and difficulty levels. We perform both in-
domain and cross-domain experiments.

In-domain We evaluate the model’s performance
when trained and tested on the same course. We ex-
periment with three out of four courses, excluding
one due to insufficient data for stable training.

Cross-Domain We selected courses to challenge
the model’s adaptability and generalization capabil-
ities. In the first cross-domain setting, labeled ‘con-
tent structure generalization’, we train the model

on the “Python Introduction” course (5,858 sam-
ples) and tested it on the “First Python” course
(1,674 samples). This pair was chosen to evaluate
the model’s ability to transfer knowledge between
courses with different content structures, including
varying difficulty levels and vocabulary usage.

In the second cross-domain experiment, labeled
‘data-scarce generalization’, we train the model on
combined data from all courses except “Algorithm”
(9,390 samples) and tested it exclusively on the
“Algorithm” course (300 samples). This choice
was motivated by our initial observation that the
model struggled on this course due to the small
data size. Through this setting, we aimed to verify
the model’s ability to generalize to a specialized,
data-scarce course by leveraging student questions.

Baseline Models To benchmark SQKT’s perfor-
mance and evaluate the impact of integrating stu-
dent questions, we compare it with several baseline
models. Our choice of baseline models is limited
by the scarcity of prior KT models capable of pro-
cessing code submissions without relying on pre-
defined skill annotations. Moreover, to the best of
our knowledge, no existing KT models incorpo-
rate student questions. To that end, we experiment
with four baseline models: KTMFF (Xiao et al.,
2023), OKT (Liu et al., 2022), and their variants.
KTMFF and OKT are known for their strong per-
formance in leveraging rich embeddings of code
submissions and capturing the structural proper-
ties of code blocks. To verify the effectiveness
our question embeddings and demonstrate their
adaptability for enhancing different models, we in-
troduce KTMFF+ and OKT+, variants of KTMFF
and OKT that incorporate question embeddings as
additional input.

Evaluation Metrics To evaluate each model’s
performance in predicting student success on pro-
gramming problems, we use AUC, accuracy, and
F1-score based on the model’s predictions. Here,
a student is considered successful on a problem if
they achieve a score of 100 within a certain num-
ber of trials. This threshold is set to the average
number of submissions across all students in each
course. Any score below 100 or a submission count
exceeding this threshold is considered a failure.

4.3 Training Setup

For each student, we predict the student’s outcome
for every problem they attempted, excluding the
first problem since it has no preceding history. For

6

Python
Introduction First Python Python Basic

AUC ACC F1 AUC ACC F1 AUC ACC F1

KTMFF 70.2 64.5 56.5 69.4 61.8 60.3 78.0 73.5 80.0
KTMFF+ 72.6 66.1 58.2 71.7 62.1 60.7 80.7 76.1 81.4
OKT 60.3 81.0 34.6 65.8 77.7 49.1 65.0 78.8 46.2
OKT+ 66.7 83.3 49.8 66.7 83.3 49.8 78.4 82.1 70.2
SQKT 93.4 89.2 88.4 90.3 87.1 84.9 93.3 88.4 89.8

Table 2: Performance comparison of various models
across three datasets. All values are in percentages.

any target problem, all the history U preceding
that problem is used as the model input. Note that
there is no risk of a student’s history being exposed
to testing, as students do not overlap between the
training and test sets (see Table 7).

We conducted a grid search across a range of
hyperparameters, including dropout rate, learning
rate, batch size, and the weight for the triplet loss.
The optimal hyperparameter values were chosen
based on performance on the validation set. The
best configuration obtained is as follows: a dropout
rate of 0.1, a learning rate of 3e-5, a batch size of
16, and an auxiliary loss weight of 1.0.

The model is trained using the Adam optimizer
on an NVIDIA A100 80GB PCIe GPU. The train-
ing times vary depending on the scenario: approxi-
mately 1 hour and 30 minutes for in-domain tasks
and around 3 hours for cross-domain tasks.

5 Experiment Results

5.1 In-Domain Results

Across the three courses, SQKT consistently out-
performed all baselines. SQKT achieved an AUC
of 87.1–93.4, representing an absolute improve-
ment of 12.6–20.8 compared to the best-performing
baseline (KTMFF+). These results demonstrate
that our SQKT model, which incorporates student
questions, is highly effective in predicting students’
future performance.

The improvement of KTMFF+ over KTMFF and
OKT+ over OKT reinforces our research motiva-
tion that student questions provide valuable insights
into student performance. It also suggests that our
question embeddings can be integrated with gen-
eral KT models to enhance their predictive accu-
racy. However, SQKT consistently outperformed
these models, underscoring the efficacy of its archi-
tecture in leveraging student questions more effec-
tively than the baselines.

Model AUC (%) ACC (%) F1 (%)

SQKT 93.4 89.2 88.4
- Question (all-ones vector) 91.3 86.3 89.9
- Question (skill only) 90.9 86.2 88.7
- Skill (question only) 89.7 81.3 83.1
- Question and skill 85.4 80.7 82.7

Table 3: Ablation study on the “Python Introduction”
course.

Python Intro. First Python Python Basic

AUC ACC F1 AUC ACC F1 AUC ACC F1

SQKT 92.3 86.3 87.3 93.0 87.1 84.9 93.3 88.4 89.8
- Question 91.6 85.8 86.9 92.5 86.5 86.9 91.9 85.7 87.7
- Triplet 91.3 85.8 90.1 90.1 83.6 84.9 91.5 85.8 87.7

Table 4: Impact of response and triplet loss functions.
All values are in percentages.

Ablation Study To evaluate the contribution of
each component in SQKT, we conducted an abla-
tion study. Basically, we explore removing ques-
tion embeddings and skill embeddings both sepa-
rately and together to assess their impact. Addi-
tionally, to examine the importance of the actual
content of student questions, we replace the ques-
tion embeddings with an all-ones vector to simply
indicate the presence of a student question (poten-
tially student confusion).

Table 3 presents the ablation results on the
“Python Basic” course (the same pattern is observed
in other courses). Using question indicators (row
2) reduces AUC and ACC, highlighting the impor-
tance of the actual content of student questions and
its effective utilization. Relying solely on either
skills (row 3) or questions (row 4) is suboptimal,
demonstrating their synergistic contribution. Re-
moving both questions and skills (row 5) signifi-
cantly degrades the model’s performance.

The results suggest that the superior performance
of SQKT stems from the unique insights provided
by student questions, such as their understanding of
theoretical concepts and specific struggles, which
are not always apparent in code submissions alone.
Further, the additional step of explicitly identify-
ing skills from their questions appears to further
enhance the clarity of student performance.

Impact of Auxiliary Losses We analyzed the im-
pact of the two auxiliary losses, i.e., question loss
(Eq. 1) and triplet loss (Eq. 2). The results in Ta-
ble 4 validate the importance of these additional
objectives in improving performance across diverse

7

Figure 4: Cross-domain performance.

programming courses. The question loss, derived
from the task of predicting educator responses to
student questions, impacts performance across the
three courses, with slight drops in performance
when removed. This loss seems to enrich the em-
bedding space by capturing important information
in student questions better.

The triplet loss, designed to unify the embed-
ding space for heterogeneous input features, has
stronger impact, making a notable contribution es-
pecially for the “First Python” course. The triplet
loss ensures effective integration of diverse data
sources.

5.2 Cross-Domain Results

Figure 4 demonstrates the model’s performance
across two cross-domain settings, evaluating its
ability to generalize to unseen courses.

In the setting of content structure generalization
(Figure 4, left), we assessed SQKT’s ability to
transfer knowledge between courses with differ-
ent levels and content structures. Our full model
(orange) showed an absolute 45.3% improvement
in AUC over without using question data (blue).

In the setting of data-scarce generalization (Fig-
ure 4, right), we trained SQKT on all courses except
“Algorithm” and tested it on the course to evaluate
the model’s generalizability to higher difficulty lev-
els and robustness in low-resource environments.
Since the “Algorithm” course has small data, fine-
tuning SQKT directly on the “Algorithms” data
(green) shows an AUC score close to random. How-
ever, our full model (orange) showed a substantial
improvement of 11.4% over the in-domain model
(green) and 16.7% over the cross-domain model
incorporating no student questions (blue).

Both experiments conclude that student ques-
tions convey generalizable insights into student
performance across different courses and that lever-
aging them greatly enhances the model’s ability to
adapt to new courses with varying difficulty levels
and limited data.

5.3 Error Analysis
To better understand our model, we conducted a
detailed analysis focused on question-related mis-
takes. We randomly sampled 60 mispredictions
from the test set, manually analyzed each data point
by tagging one or more error types. Table 8 in Ap-
pendix presents a breakdown of these errors, their
proportions, examples, and underlying reasons.

Our analysis shows that ‘Complexity’ is the
most prevalent issue (55.6%), often due to code
snippets containing mixed language syntax, which
challenges the model’s parsing capabilities. ‘Con-
fusion’ is the second most common error type
(40.7%), typically occurring when the error in the
code is unrelated to the student’s question, making
it difficult for the model to establish the correct
correlation. ‘Ambiguity’ (22.2%) and ‘Incomplete-
ness’ (29.6%) also contribute significantly to model
errors, emphasizing the need for clear, context-rich
questions for accurate predictions. The analysis
highlights key areas for improvement in the SQKT
model. For example, incorporating more advanced
natural language processing techniques to handle
multi-lingual input could enhance the model’s abil-
ity to interpret students’ questions more accurately.

6 Conclusion

This paper introduces SQKT, a knowledge tracing
model in programming education that addresses the
unique challenges of predicting students’ perfor-
mance on subsequent problems in coding tasks. By
integrating students’ questions and auto-extracted
skill information, SQKT provides a more compre-
hensive view of student knowledge than traditional
KT models. We demonstrate the effectiveness of
SQKT across various programming courses and dif-
ficulty levels, consistently outperforming baseline
models in both in-domain and cross-domain set-
tings. SQKT shows its ability to capture valuable
information about students’ programming compe-
tencies through their questions. We expect that our
method can contribute to more personalized and
effective learning interventions in programming
education.

Limitations

This study has several limitations. First, we did
not apply any preprocessing to the input questions
prior to analysis. Although this approach more
closely mirrors actual classroom conditions, inputs
are often noisy. To address this, we implemented

8

a skill extractor system designed to effectively ex-
tract information from such noisy inputs. Future
research could explore whether introducing filter-
ing or normalization steps might improve model
performance.

Second, the skill extractor system employs a rule-
based methodology rather than statistical machine
learning techniques. This choice aims to ensure
interpretability, offering a clear and explainable
mapping between questions and skills. However,
adopting machine learning methods could offer sig-
nificant benefits, such as improved scalability and
the ability to adapt to unseen patterns. Future stud-
ies could investigate hybrid approaches that com-
bine the rule-based systems with machine learning
models.

References
Amjad Altadmri and Neil CC Brown. 2015. 37 mil-

lion compilations: Investigating novice programming
mistakes in large-scale student data. In Proceedings
of the 46th ACM technical symposium on computer
science education, pages 522–527.

Amal Asselman, Mohamed Khaldi, and Souhaib Aam-
mou. 2020. Evaluating the impact of prior required
scaffolding items on the improvement of student per-
formance prediction. Education and Information
Technologies, 25:3227–3249.

Brett A Becker, Paul Denny, Raymond Pettit, Durell
Bouchard, Dennis J Bouvier, Brian Harrington, Amir
Kamil, Amey Karkare, Chris McDonald, Peter-
Michael Osera, et al. 2019. Compiler error messages
considered unhelpful: The landscape of text-based
programming error message research. Proceedings
of the working group reports on innovation and tech-
nology in computer science education, pages 177–
210.

Albert T Corbett and John R Anderson. 1994. Knowl-
edge tracing: Modeling the acquisition of procedural
knowledge. In User modeling and user-adapted in-
teraction, volume 4, pages 253–278. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Allen B Downey and Chris Mayfield, editors. 2019.
Think Java: How to think like a computer scientist.
O’Reilly Media.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Matthew Hertz and Sarah Michele Ford. 2013. Inves-
tigating factors of student learning in introductory
courses. In Proceeding of the 44th ACM technical
symposium on Computer science education, pages
195–200.

Alison King. 1994. Guiding knowledge construction in
the classroom: Effects of teaching children how to
question and how to explain. American educational
research journal, 31(2):338–368.

Naiming Liu, Zichao Wang, Richard Baraniuk, and An-
drew Lan. 2022. Open-ended knowledge tracing for
computer science education. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas J Guibas, and
Jascha Sohl-Dickstein. 2015. Deep knowledge trac-
ing. Advances in neural information processing sys-
tems, 28.

Yang Shi, Min Chi, Tiffany Barnes, and Thomas Price.
2022. Code-dkt: A code-based knowledge trac-
ing model for programming tasks. arXiv preprint
arXiv:2206.03545.

Zhuoqing Song, Sirui Huang, and Ya Zhou. 2021. A
deep knowledge tracking model integrating difficulty
factors. In The 2nd International Conference on
Computing and Data Science, pages 1–5.

Dan Sun, Fan Ouyang, Yan Li, and Caifeng Zhu. 2021.
Comparing learners’ knowledge, behaviors, and atti-
tudes between two instructional modes of computer
programming in secondary education. International
Journal of STEM Education, 8:1–15.

Xia Sun, Xu Zhao, Bo Li, Yuan Ma, Richard Sutcliffe,
and Jun Feng. 2022. Dynamic key-value memory
networks with rich features for knowledge tracing.
IEEE Transactions on Cybernetics.

Al Sweigart, editor. 2019. Automate the boring stuff
with Python: practical programming for total begin-
ners. No Starch Press.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Yongkang Xiao, Rong Xiao, Ning Huang, Yixin Hu,
Huan Li, and Bo Sun. 2023. Knowledge tracing
based on multi-feature fusion. Neural Computing
and Applications, 35(2):1819–1833.

Liang Yu, Peng Tianhao, Pu Yanjun, and Wu Wenjun.
2022. Help-dkt: an interpretable cognitive model
of how students learn programming based on deep
knowledge tracing. In Nature Scientific Reports.

9

https://doi.org/10.1109/TCYB.2021.3051028
https://doi.org/10.1109/TCYB.2021.3051028

A Python Skill Set

Value Variable Assign Keywords Operators Operands
Type Convertor input function print function Boolean Values Boolean Expressions
Logical Operators If-Else Statements For Loops While Loops Break Statement
Continue Statement Function Definitions return Statement Local, Global Scope Strings
String Slicing Indexing Lists Dictionaries Import Statement
random time math Opening files Reading files
Writing files Closing files SyntaxError NameError TypeError
IndentationError ValueError AttributeError IndexError KeyError
TabError UnicodeDecodeError FileNotFoundError ModuleNotFoundError ZeroDivisionError
UnboundLocalError ImportError UnicodeEncodeError LookupError ConnectionError
RuntimeError

Table 5: Categorized Python concepts and errors

B Description of dataset and train-validation-test split

Course Name Description

Python Basic Beginner-level course covering basic python concepts.
First Python A beginner-friendly course focusing on fundamental Python programming.
Algorithm An intermediate to advanced course on algorithms implemented in Python.
Python Introduction A comprehensive course covering basic to intermediate python concepts.

Table 6: Description of dataset

Course Name Type Train Validation Test

Python Basic # of students 128 16 16
of problems 2,665 362 412

First Python # of students 6512 814 815
of problems 153,015 19,140 11,302

Algorithm # of students 61 8 8
of problems 273 52 5

Python Introduction # of students 873 109 110
of problemss 65,372 4,690 4,135

Table 7: Statistics for dataset splits

10

C Error Analysis

Error Type Occurrence Questions Reason

Ambiguity 22.2% Traceback (most recent call last):
File "main.py", line 4, in ⟨module⟩
pr NameError: name ’pr’ is not
defined
"please show me the correct
answer."

The meaning of the ques-
tion lacks context, allow-
ing for various interpreta-
tions

Confusion 40.7% Traceback (most recent call last):
File "main.py", line 5, in ⟨module⟩
for key in len(int(data)) TypeError:
int() argument must be a string, a
bytes-like object or a number, not
’dict’
"If len(scores), does it include up to
scores?
If len(scores), shouldn’t it be
scores+1 to include the last score?"

When the error message is
unrelated to the student’s
question, making it diffi-
cult to easily determine
their correlation, causing
the model to be confused
about what to focus on
within the question

Incompleteness 29.6% "Please provide the answer" The question is too simple
and lacks necessary infor-
mation

Complexity 55.6% File "main.py", line 5
init(self, "sweet potato(Korean)"):
SyntaxError: invalid syntax
"please explain this error"

The question contains a
code snippet with a mix
of Korean characters and
English syntax. This com-
bination of different char-
acter sets and languages
introduces additional com-
plexity

Table 8: Detailed error analysis of SQKT

11

D Dataset Example

D.1 Python Basic - 1

Problem Data Example

Alice
the

Rabbit’s
Math

Homework

Problem
Description

Write a program that takes a natural number as input and outputs the difference between
the square of the sum and the sum of the squares for numbers from 1 to the given input.

Problem
Solution

N = int(input())
i_square = 0
i_list = list(range(1, N + 1))
for i in i_list:

i_square += i**2
i += 1

sum_square = sum(i_list)**2
print(sum_square - i_square)

Student’s
code

submission

summation = 0
while num > 0:

summation = summation + 1
num = num - 1

print(summation)

Student’s
question

Why does the summation variable not produce the correct summation when printed in
the given code?

Skill While-loop, Print function, Operator

Educator’s
response

Since the while loop increments summation by 1 in each iteration, if you input 10, the
final value stored in summation will be 10.

Table 9: Example of Python Basic dataset - 1

D.2 Python Basic -2

Problem Data Example

Script
Polishing

Problem
Description

The variable ‘sentence‘ contains a randomly generated even-length sentence read by the
Mad Hatter.

Prompt the user to input a special character to insert into the middle of the sen-
tence. Then, insert the inputted special character into the middle of the string ‘sentence‘
and save the result.

Problem
Solution

sentence =
sentence[: len(sentence) // 2] + input() + sentence[len(sentence) // 2
:]

Student’s
Code

Submission

st_len1 = sentence[x:]
st_len2 = sentence[:x]
add_st = str(input())
sentence = st_len1 + add_st + st_len2

Student’s
Question

Can’t it be done using only parentheses?
Is it better to use square brackets for distinction? Square brackets are used for index
slicing.
Also, how can I insert a string into the middle of another string?

Skill String, Operators, Indexing

Educator’s
response Parentheses do not function the same way.

Table 10: Example of Python Basic dataset - 2

12

D.3 Python Introduction - 1

Problem Data Example

Copycat
Parrot

Problem
Description

If you’ve entered the code on line 02, click [Run]. Do you see the cursor blinking in the
output window? Type anything you want to say in this area, then press [Enter].

Problem
Solution

var = input()
print(’Parrot:’, var)

Student’s
Code

Submission

var = raw_input("Enter a value:")
print(’Parrot:’, var)

Student’s
Question

var = input(”)
print(’Parrot:’, var)
What should I enter in the input(”) function?

Skill Variable Assign, Operands, input function, print function

Educator’s
response

Please enclose the string "Parrot" in quotation marks when entering it. For example, you
can input it as follows:

var = input(’Parrot’)

Table 11: Example of Python Introduction dataset - 1

13

D.4 Python Introduction - 2

Problem Data Example

Creating a
Mysterious

Data
Dictionary

Problem
Description

Enter your age as a number inside the parentheses.
Enter your name as a string inside the parentheses.
Enter a list containing your age and name inside the parentheses.

Problem
Solution

print(20)
print("Your Name")
print([20, "Your Name"])

Student’s
Code

Submission

print(17)
print("Your Name")
print[17, James Bond]

Student’s
Question

Traceback (most recent call last):
File "main.py", line 8, in <module>
print[17, James Bond]

NameError: name ’James Bond’ is not defined

Skill Value, NameError]

Educator’s
response

This error indicates that the variable James Bond has not been defined. Variables must
be defined before they are used. To fix this, the line print[17, James Bond] needs to
be corrected by defining James Bond as a string.

Table 12: Example of Python Introduction dataset - 2

D.5 First Python - 1

Problem Data Example

If Else
Statements

Problem
Description

Write the if condition on line 4 so that it evaluates to true when the entered password
password matches the set password answer.
Run the program and try entering the password 34566.

Problem
Solution

answer = 12345
password = input("Enter the password: ")
if password == answer: print("Password OK!")
else: print("Password Not OK!")

Student’s
Code

Submission

answer = ’12345’
password = input(’Enter the password: ’)
if answer==password: print(’Password OK!’)
else: print(’Password Not OK!’)

Student’s
Quesion

If I input ’12345’ in the terminal, it shows incorrect. But if I input 12345, it shows
correct. Why is that? Can’t I set answer = 12345 instead? If answer = ’12345’, do I need
to type 12345 in the terminal for it to match?

Skill input function, Variable

Educator’s
response

The symbols ” are used to represent a string.
Since input values in the terminal are automatically processed as strings, there is no need
to include ” when typing input in the terminal.

Table 13: Example of First Python dataset - 1

14

D.6 First Python - 2

Problem Data Example

Prime
Number
Finder

Problem
Description

Write a program to find prime numbers between 1 and N, where N is an input value. Run
the program and enter 200 as the value of N.

Problem
Solution

n = int(input("Enter the value of N: "))
for a in range(2, n+1):

prime_yes = True
for i in range(2, a):

if a % i == 0: prime_yes = False break
if prime_yes:print(a, end=" ")

Student’s
Code

Submission

n = int(input("Enter the value of N: "))
for a in range(2, n+1):

result = True
for i in range(2, a):

if a % i == 0: result = False
break

if result = True: print(a, end=" ")

Student’s
Question

In this part, doesn’t ‘if result:’ mean the same as ‘if result = True’?
Why does it cause an error when I write ‘if result = True’?

Skill If-Else Statements, Boolean Values

Educator’s
response You need to use ==.

Table 14: Example of First Python dataset - 2

15

	Introduction
	Related Works
	Methods
	Multi-feature Inputs
	Multi-Head Self-Attention Layers

	Experiment Settings
	Dataset
	Experimental Setup
	Training Setup

	Experiment Results
	In-Domain Results
	Cross-Domain Results
	Error Analysis

	Conclusion
	Python Skill Set
	Description of dataset and train-validation-test split
	Error Analysis
	Dataset Example
	Python Basic - 1
	Python Basic -2
	Python Introduction - 1
	Python Introduction - 2
	First Python - 1
	First Python - 2

